Examples



mdbootstrap.com



 
Статья
2021

Molecular Structures of Heteroligand Macrotetracyclic Complexes of 3d Ions with Phthalocyanine and Fluoride Anion Studied by Density Functional Theory


D. V. ChachkovD. V. Chachkov, O. V. MikhailovO. V. Mikhailov
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421020072
Abstract / Full Text

The molecular structures of the (6666) macrotetracyclic heteroligand chelates of M(III) (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) with the (NNNN)-donor-atom ligand phthalocyanine and fluoride anion were calculated using the density functional theory (DFT) in the OPBE/TZVP version. All these metal complexes have the structure of a slightly distorted tetragonal pyramid, where the M(III) complexing agent lies over its base consisting of nitrogen donor atoms. The values ​​of the most important bond lengths and bond and non-bond angles in these complexes were given. All the six-membered metal chelate cycles in eight of these nine metal chelates are identical both in the sum of their bond angles and assortment; the only exception is the Mn(III) complex, in which these metallocycles are equal only in pairs. Pronounced electron density delocalization takes place over the entire macrocycle in each of these coordination compounds. The standard enthalpy, entropy, and Gibbs energy of formation of these compounds were also calculated.

Author information
  • Kazan Department of Joint Supercomputer Center of Russian Academy of Sciences – Branch of the Federal Research Center “Scientific Research Institute of System Analysis of Russian Academy of Sciences”, 420111, Kazan, RussiaD. V. Chachkov
  • Kazan National Research Technological University, 420015, Kazan, RussiaO. V. Mikhailov
References
  1. K. Kasuda and M. Tsutsui, Coord. Chem. Rev. 32, 67 (1980).
  2. A. L. Thomas, Phthalocyanines. Research and Applications (CRC, Boca Raton, FL, 1990).
  3. W. Sliva and B. Mianovska, Trans. Met. Chem. 25, 491 (2000).
  4. G. M. Mamardashvili, N. Z. Mamardashvili, and O. I. Koifman, Russ. Chem. Rev. 77, 59 (2008).
  5. T. N. Lomova, Axially Coordinated Metalloporphyrins in Science and Practice (URSS-KRASAND, Moscow, 2018) [in Russian].
  6. O. G. Khelevina and A. S. Malyasova, J. Porphyr. Phthalocyan. 23, 1251 (2019).
  7. Kikuko Okada, Atsumi Sumida, Rie Inagaki, and Masahiko Inamo, Inorg. Chim. Acta. 392, 473 (2012).
  8. C. Colomban, E. V. Kudric, P. Afanasiev, and A. B. Sorokin, J. Am. Chem. Soc. 136, 11321 (2014). https://doi.org/10.1021/ja505437h
  9. J. W. Buchler and K. Rohbock, Inorg. Nucl. Chem. Lett. 8, 1073 (1972).
  10. R. Guilard, P. Richard, M. El Borai, and E. Laviron, J. Chem. Soc., Chem Commun., No. 11, 516 (1980). https://doi.org/10.1039/C39800000516
  11. C. Lecomte, J. Protas, P. Richard, et al., J. Chem. Soc., Dalton Trans., No. 2, 247 (1982). https://doi.org/10.1039/DT9820000247
  12. P. A. Stuzhin, in Fluorine in Heterocyclic Chemistry, Ed. by V. G. Nenajdenko, Vol. 1, 5: Membered Heterocycles and Macrocycles (Springer, Heidelberg, 2014), p. 621.
  13. I. A. Lebedeva (Yablokova), S. S. Ivanova, Y. A. Zhabanov, et al., J. Fluorine Chem. 214, 86 (2018).
  14. D. V. Chachkov and O. V. Mikhailov, Russ. J. Inorg. Chem. 58, 174 (2013). https://doi.org/10.1134/S0036023613020186
  15. D. V. Chachkov and O. V. Mikhailov, Russ. J. Inorg. Chem. 59, 218 (2014). https://doi.org/10.1134/S0036023614030024
  16. O. V. Mikhailov and D. V. Chachkov, Russ. J. Inorg. Chem. 60, 1354 (2015). https://doi.org/10.1134/S003602361511011X
  17. A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992). https://doi.org/10.1063/1.463096
  18. A. Schaefer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994). https://doi.org/10.1063/1.467146
  19. W.-M. Hoe, A. Cohen, and N. C. Handy, Chem. Phys. Lett. 341, 319 (2001). https://doi.org/10.1016/S0009-2614(01)00581-4
  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  21. H. Paulsen, L. Duelund, H. Winkler, et al., Inorg. Chem. 40, 2201 (2001).https://doi.org/10.1021/ic000954q
  22. M. Swart, A. R. Groenhof, A. W. Ehlers, and K. Lammertsma, J. Phys. Chem. A 108, 5479 (2004). https://doi.org/10.1021/jp049043i
  23. M. Swart, A. W. Ehlers, and K. Lammertsma, Mol. Phys. 102, 2467 (2004).https://doi.org/10.1080/0026897042000275017
  24. M. Swart, Inorg. Chim. Acta 360, 179 (2007). https://doi.org/10.1016/j.ica.2006.07.073
  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, H. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision A.01 (Gaussian, Inc., Wallingford CT, 2009).
  26. J. W. Ochterski, Thermochemistry in Gaussian (Gaussian, Inc., Wallingford CT, 2000).