The Influence of Ultrafine-Grained State of Zr – 1 wt.% Nb and Ti – 45 wt.% Nb Alloys on their Thermophysical Properties and Energy Dissipation and Accumulation during Deformation

E. V. LegostaevaE. V. Legostaeva, Yu. P. SharkeevYu. P. Sharkeev, O. A. BelyavskayaO. A. Belyavskaya, V. P. VavilovV. P. Vavilov, V. A. SkripnyakV. A. Skripnyak, A. Yu. ZhilyakovA. Yu. Zhilyakov, V. P. KuznetsovV. P. Kuznetsov, A. Yu. EroshenkoA. Yu. Eroshenko
Российский физический журнал
Abstract / Full Text

The results of a study of thermal conductivity and specific heat capacity of Zr – 1 wt.% Nb and Ti – 45 wt.% Nb alloys in coarse-grained and ultrafine-grained states are presented. The influence of the utrafinegrained state on the thermophysical properties and the processes of energy dissipation and accumulation during deformation of the alloys are estimated. It is shown that the formation of an ultrafine-grained state in a Zr – 1 wt.% Nb alloy by abc-pressing and subsequent rolling leads to a decrease in its thermal conductivity and specific heat capacity by 10 and 20%, respectively, due to substructural strengthening under severe plastic deformation. It is found out that thermal conductivity and specific heat capacity of the ultrafine-grained Ti – 45 wt.% Nb alloy increase by 7.5 and 5%, respectively, due to dispersion hardening of the ω phase by nanoparticles and formation of a new α phase. It is established that the ultrafine-grained structure has a significant influence on the energy dissipation and accumulation during plastic deformation, which in turn depend on their thermophysical characteristics and on the structural and phase states.

Author information
  • Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Science, Tomsk, RussiaE. V. Legostaeva, Yu. P. Sharkeev, O. A. Belyavskaya & A. Yu. Eroshenko
  • National Research Tomsk Polytechnic University, Tomsk, RussiaV. P. Vavilov
  • National Research Tomsk State University, Tomsk, RussiaV. A. Skripnyak
  • Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, RussiaA. Yu. Zhilyakov & V. P. Kuznetsov
  1. R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, John Wiley & Sons, New Jersey (2014).
  2. Yu. R. Kolobov, Yu. P. Sharkeev, A. V. Karlov, et al., Def. Raz. Mater., No. 4, 2 (2005).
  3. Yu. P. Sharkeev, E. V. Legostaeva, A.Yu. Eroshenko, et al., Composit. Interfac., 16, 535 (2009).
  4. G. A. Salischev, R. M. Galeev, S. P. Malysheva, et al., Met. Term. Obr., No. 2, 19 (2006).
  5. V. I. Danilov, A. Yu. Eroshenko, A. Yu. Sharkeev, et al., Fizich. Mezomekh, 17, No. 4, 77 (2014).
  6. Yen-Huei Hon, Jian-Yih Wang, and Yung-Ning Pan, Mater.Trans., 44, No. 11, 2384 (2003).
  7. A. Panigrahi, B. Sulkowski, and T. Waitz , J. Mech. Behavior Biomed. Mater., 62, 93 (2016).
  8. V. L. Hilarov and A. I. Slutsker, Phys Solid State, 56, 2493 (2014).
  9. O. A. Plekhov, S. V. Uvarov, O. B. Naimark, et al., Mater. Sci. Eng. A, 462, No. 1–2, 367 (2007).
  10. V. P. Vavilov, Infrared Thermography and Thermal Control [in Russian], Spektr, Moscow (2009).
  11. S. Bagavathiappan, B. B. Lahiri, T. Saravanan, et al., Infrared Phys. Tech., 60, 35 (2013).
  12. C. Meola and G. M. Carlomagno, Meas. Sci. Technol., 15, 27 (2004).
  13. E. A. Moyseychik, J. Appl. Mech. Tech. Phys., 54, 116 (2013).
  14. E. A. Pieczyska, M. Maj, K. Golasiński, et al., Materials, No. 11, 567 (2018).
  15. O. Plekhov, O. Naimark, V. Chudinov, et al., Tech. Phys. Lett., 35, No. 1, 92 (2009).
  16. A.Yu. Eroshenko, A. M. Mairambekova, Yu. P. Sharkeev, et al., Lett. Mater., 4, No. 7, 469 (2017).
  17. A. Yu. Eroshenko, Yu. P. Sharkeev, I. A. Glukhov, et al., Russ. Phys. J., 61, No. 10, 1899 (2018).
  18. W. J. Parker, R. J. Jenkins, C. P. Butler, et al., J. Appl. Phys., 32, No. 9, 1679 (1961).
  19. ASTM E1269 (2011) Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry.
  20. Yu. P. Sharkeev, V. P. Vavilov, V. A. Skrypnyak, et al., Mater. Sci. Eng. A, 784, 139203 (2020).
  21. V. I. Gorbatov, V.F. Polev, V. P. Pilugin, et al., High Temperature, 51, No. 4, 482 (2013).
  22. A. L. Smirnov, S. G. Taluts, A. D. Ivliev, et al., High Temperature, 55, No. 3, 380 (2017).
  23. V. I. Gorbatov, V. F. Polev, I. G. Korshunov, et al., High Temperature, 54, No. 2, 294 (2016).
  24. Yu. Sharkeev, V. Vavilov, V. Skripnyak, et al., Metals, 8, No. 9, 703 (2018).