Effect of Copper Sulfate Concentration on the Electrochemical Nucleation Process, Growth and Properties of n-Type Cu2O Thin Films

A. Herbadji A. Herbadji , I. Y. Bouderbala I. Y. Bouderbala , L. Mentar L. Mentar , A. Azizi A. Azizi
Российский электрохимический журнал
Abstract / Full Text

Cu2O-n thin films were successfully electrodeposited from a Cu(II) lactate solution containing different concentrations of copper(II) sulfate (CuSO4) and 1 M lactic acid (C3H6O3) at pH 6.5. The electrochemical behaviour of Cu2O thin films has been investigated by means of cyclic voltammetry (CV), chronoamperometry (CA). The nucleation behaviour of the deposited Cu2O has been studied on FTO substrates as a function of Cu2+ concentration. It was found that the nucleation changes from progressive to instantaneous with increasing Cu2+ concentration. Many electrochemical parameters were investigated such as transfer coefficient, diffusion coefficient, cathodic and anodic charges, nucleation rate etc. The effect of the nucleation mechanism on microstructural and optical properties of Cu2O were investigated by X-ray diffractometry (XRD) and ultraviolet visible spectrophotometry (UV–Vis–NIR) and photoluminescence (PL). The optimal concentration of Cu2+ ions was found to be 0.075 and 0.1 M obtained with instantaneous nucleation process. The high photoluminescence (PL) efficiency observed indicating good optical properties with a high carrier density, small depletion layer, high photo-generated electron–hole pairs, narrow band gap and low charge transfer resistance. This results exhibit a high photoelectric performance.

Author information
  • Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures, Université Ferhat Abbas Sétif-1, 19000, Sétif, Algeria

    A. Herbadji, I. Y. Bouderbala, L. Mentar & A. Azizi

  • Département de Génie des Procèdes, Faculté de Technologie, Université Ferhat Abbas Sétif-1, 19000, Sétif, Algeria

    A. Herbadji

  • Laboratoire des Systèmes Photoniques et Optiques Non Linéaires, Institut d’Optique et Mécanique de Précision, Université Ferhat Abbas Sétif-1, 19000, Sétif, Algeria

    I. Y. Bouderbala

  1. Kaur, J., Bethge, O., Wibowo, R., Bansal, N., Bauch, M., Hamid, R., Bertagnolli, E., and Dimopoulos, T., All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode, Sol. Energy Mater. Sol. Cells, 2017, vol. 161, p. 449.
  2. Wijesundera, R., Gunawardhana, L., and Siripala, W., Electrodeposited Cu2O homojunction solar cells: fabrication of a cell of high short circuit photocurrent, Sol. Energy Mater. Sol. Cells, 2016, vol. 157, p. 881.
  3. Nishi, Y., Miyata, T., and Minami, T., Electrochemically deposited Cu2O thin films on thermally oxidized Cu2O sheets for solar cell applications, Sol. Energy Mater. Sol. Cells, 2016, vol. 155, p. 405.
  4. Elfadill, N., Hashim, M., Chahrour, K., and Mohammed, S., Electrochemical deposition of Na-doped p‑type Cu2O film on n-type Si for photovoltaic application, J. Electroanal. Chem., 2016, vol. 767, p. 7.
  5. Yu, X., Li, X., Zheng, G., Wei, Y., Zhang, A., and Yao, B., Preparation and properties of KCl-doped Cu2O thin film by electrodeposition, Appl. Surf. Sci., 2013, vol. 270, p. 340.
  6. Bergerot, L., Jimenez, C., Chaix-Pluchery, O., Rapenne, L., and Deschanvres, J., Growth and characterization of Sr-doped Cu2O thin films deposited by metalorganic chemical vapor deposition, Phys. Status Solidi, 2015, vol. 212, p. 1735.
  7. Akhavan, O., Tohidi, H., and Moshfegh, A., Synthesis and electrochromic study of sol-gel cuprous oxide nanoparticles accumulated on silica thin film, Thin Solid Films, 2009, vol. 517, p. 6700.
  8. Musa, A., Akomolafe, T., and Carter, M., Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties, Sol. Energy Mater. Sol. Cells, 1998, vol. 51, p. 305.
  9. Lee, S., Heo, J., Siah, S., Chua, D., Brandt, R., Kim, S., Mailoa, J., Buonassisi, T., and Gordon, R., Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the pn junction,‎ Adv. Energy Mater., 2014, vol. 14, p. 1.
  10. Chen, A., Long, H., Li, X., Li, Y., Yang, G., and Lu, P., Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition, Vacuum, 2009, vol. 83, p. 927.
  11. Lee, S., Yun, S., and Lim, J., The characteristics of Cu2O thin films deposited using RF-magnetron sputtering method with nitrogen-ambient, ETRI J., 2013, vol. 35, p. 1156.
  12. Bouderbala, I.Y., Herbadji, A., Mentar, L., Beniaiche, A., and Azizi, A., Optical properties of Cu2O electrodeposited on FTO substrates: effects of Cl concentration, J. Electron. Mater., 2017, vol. 47, p. 2000.
  13. Wu, X., Liu, J., Huang, P., Huang, Z., Lai, F., Chen, G., Lin, L., Lv, P., Zheng, W., and Qu, Y., Engineering crystal orientation of p-Cu2O on heterojunction solar cells, Surf. Eng., 2017, vol. 33, p. 542.
  14. Binti Mohamad Arifin, N., Mohamad, F., Hui Ling, C., Binti Zinal, N., Binti Mohd Hanif, A., Muhd Nor, N., and Izaki, M., Growth mechanism of copper oxide fabricaticated by potentiostatic electrodeposition method, Mater. Sci. Forum, 2017, vol. 890, p. 303.
  15. Li, G., Huang, Y., Fan, Q., et al., Effects of bath pH on structural and electrochemical performance of Cu2O, Ionics, 2016, vol. 22, p. 2213.
  16. Brandt, I.S., Tumelero, M.A., Pelegrini Zangari, S.G., and Pasa, A.A., Electrodeposition of Cu2O: growth, properties, and applications, J. Solid State Electrochem., 2017, vol. 21, p. 1999.
  17. Wang, P., Wu, H., Tang, Y., Zhang, M., Lan, Q., Fan, X., Zhou, Z., and Zhang, C., Electrodeposited Cu2O as photoelectrodes with controllableconductivity type for solar energy conversion, J. Phys. Chem. C, 2015, vol. 119, p. 26275.
  18. Jiang, X., Lin, Q., Zhang, M., Song, X., and Sun, Z., Effect of temperature and additive on the structural, morphologicaland optical properties of Cu2O thin films, Optik, 2015, vol. 126, p. 5544.
  19. Scharifker, B. and Hills, G., Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 1982, vol. 28, p. 879.
  20. Paracchino, A., Brauer, J., Moser, J., Thimsen, E., and Graetzel, M., Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy, J. Phys. Chem. C, 2012, vol. 116, p. 7341.
  21. Reyes Tolosa, M., Orozco-Messana, J., Lima, A., Camaratta, R., Pascual, M., and Hernandez-Fenollosa, M., Electrochemical deposition mechanism for ZnO nanorods: diffusion coefficient and growth models, J. Electrochem. Soc., 2011, vol. 158, p. E107.
  22. Henni, A., Merrouche, A., Telli, L., Walter, S., Azizi, A., and Fenineche, N., Materials science in semiconductor processing effect of H2O2 concentration on electrochemical growth and properties of vertically oriented ZnO nanorods electrodeposited from chloride solutions, Mater. Sci. Semicond. Process, 2015, vol. 40, p. 585.
  23. Yu, X., Tang, X., Li, J., Zhang, J., Kou, S., Zhao, J., and Yao, B., Nucleation mechanism and optoelectronic properties of Cu2O onto ito electrode in the electrochemical deposition process, J. Electrochem. Soc., 2017, vol. 164, p. D999.
  24. Shinagawa, T., Ida, Y., Mizuno, K., Watase, S., Watanabe, M., Inaba, M., Tasaka, A., and Izaki, M., Controllable growth orientation of Ag2O and Cu2O films by electrocrystallization from aqueous solutions, Cryst. Growth Des., 2013, vol. 13, p. 52.
  25. Ghezali, K., Mentar, L., Boudine, B., and Azizi, A., Electrochemical deposition of ZnS thin films and their structural, morphological and optical properties, J. Electroanal. Chem., 2017, vol. 794, p. 212.
  26. Pandolfo, A.G. and Hollenkamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, p. 11.
  27. Elmezayyen, A., Guan, S., Reicha, F., El-Sherbiny, I., Zheng, J., and Xu, C., Effect of conductive substrate (working electrode) on the morphology of electrodeposited Cu2O, J. Phys. D Appl. Phys., 2015, vol. 48, p. 175502.
  28. Nkosi, D., Pillay, J., and Ozoemena, K.I., Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 604.
  29. Kumar, R., Rai, P., and Sharma, A., Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties, RSC Adv., 2016, vol. 6, p. 3815.
  30. Song, X., Wu, J., Tang, M., Qi, B., and Yan, M., Enhanced photoelectrochemical response of a composite titania thin film with single-crystalline rutile nanorods embedded in anatase aggregates, J. Phys. Chem. C, 2008, vol. 112, p. 19484.
  31. Zhang, Z., Yuan, Y., Fang, Y., Liang, L., Ding, H., Shi, G., and Jin, L., Photoelectrochemical oxidation behavior of methanol on highly ordered TiO2 nanotube array electrodes, J. Electroanal. Chem., 2007, vol. 610, p. 179.
  32. Gund, G., Dubal, D., Patil, B., Shinde, S., and Lokhande, C., Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors, Electrochim. Acta, 2013, vol. 92, p. 205.
  33. Aziz, R., Misnon, I., Chong, K., Yusoff, M., and Jose, R., Layered sodium titanate nanostructures as a new electrode for high energy density supercapacitors, Electrochim. Acta, 2013, vol. 113, p. 141.
  34. Mentar, L., Baka, O., Khelladi, M., Azizi, A., Velumani, S., Schmerber, G., and Dinia, A., Effect of nitrate concentration on the electrochemical growth and properties of ZnO nanostructures, J. Mater. Sci. Mater. Electron., 2014, vol. 26, p. 1217.
  35. Qi, X., She, G., Huang, X., Zhang, T., Wang, H., Mu, L., and Shi, W., High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting, Nanoscale, 2014, vol. 6, p. 3182.
  36. Kuriakose, S., Satpat, B., and Mohapatra, S., Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facikle wet chemical method, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 12741.
  37. Viezbicke, B., Patel, S., Davis, B., and Birnie, D., Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system, Phys. Status Solidi, 2015, vol. 252, p. 1700.
  38. Brandt, I., Martins, C., Zoldan, V., Viegas, A., Dias Da Silva, J., and Pasa, A., Structural and optical properties of Cu2O crystalline electrodeposited films, Thin Solid Films, 2014, vol. 562, p. 144.
  39. Nian, J., Tsai, C., Lin, P., and Teng, H., Elucidating the conductivity-type transition mechanism of p-type Cu2O films from electrodeposition, J. Electrochem. Soc., 2009, vol. 156, p. H567.
  40. Rajani, K., Daniels, S., McGlynn, E., Gandhiraman, R.P., Groarke, R., and McNally, P.J., Low temperature growth technique for nanocrystalline cuprous oxide thin fi lms using microwave plasma oxidation of copper, Mater. Lett., 2012, vol. 71, p. 160.