Статья
2020

Electrochemical Synthesis of Uniform Cu2O Film and Its Photoelectrochemical Properties


G. Heidari G. Heidari , A. Pordel A. Pordel , M. Roeinfard M. Roeinfard
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520030052
Abstract / Full Text

Cu2O films as photocathodes were synthesized using direct current electrodeposition method. Utilizing a cyclic voltammetry (CV) test before potentiostatic electrodeposition increased the uniformity and transparency of the Cu2O film. The optical band gap of the Cu2O film obtained through electrodeposition for 7200 s was 2.1 eV, while the one electrodeposited for 1000 s showed a blue shift (2.4 eV). The high transparency of the Cu2O film electrodeposited after the CV test and increased thickness of the electrodeposited film for 7200 s did not affect the value of the photocurrent density. The photocurrent density of the electrodeposited films for time periods more than 200 s did not change considerably. The thickness of the Cu2O film electrodeposited for 200 s was measured to be 70 nm. Electrodeposition for above 200 s resulted in Cu2O films with thicknesses greater than the electron collection length, i.e. 20–100 nm, which was the reason why the photocurrent density was not improved. Electrochemical impedance spectroscopy (EIS) was used to explain charge transfer characteristics of the Cu2O photocathode. The Nyquist plot showed two semicircles, which can be attributed to the charge transfer process across the electrode/electrolyte interface and inside the electrode. The EIS data was fitted with an equivalent circuit and the parameters value was derived. Using the Mott–Schottky plot, the flat band potential and the carrier density were obtained to be 0.19 V vs. Ag/AgCl and 1.3 × 1018 cm–3, respectively.

Author information
  • Esfarayen University of Technology, Esfarayen, Iran

    G. Heidari, A. Pordel & M. Roeinfard

References
  1. Ahmad, H., Kamarudin, S., Minggu, L., and Kassim, M., Hydrogen from photo-catalytic water splitting process: a review, Renew. Sust. Energy Rev., 2015, vol. 43, p. 599.
  2. Cen, J., Wu, Q., Liu, M., and Orlov, A., Developing new understanding of photoelectrochemical water splitting via in-situ techniques: a review on recent progress, Green Energy Environ., 2017, vol. 2, p. 100.
  3. Bak, T., Nowotny, J., Rekas, M., and Sorrell, C., Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects, Int. J. Hydrogen Energy, 2002, vol. 27, p. 991.
  4. Heidari, G., Rabani, M., and Ramezanzadeh, B., Application of CuS–ZnS PN junction for photoelectrochemical water splitting, Int. J. Hydrogen Energy, 2017, vol. 42, p. 9545.
  5. Suleimanov, A.S., Photoelectrochemical behavior of heterosystem AIIBVI/TiO2-RuO2 in electrolysis of aqueous electrolytes, Russ. J. Electrochem., 2003, vol. 39, p. 298.
  6. Arutyunyan, V.M., Arakelyan, V.M., Shakhnazaryan, G.E., Stepanyan, G.M., Turner, J.A., and Khaselev, O., Ceramic Fe2O3: Ta photoelectrodes for photoelectrochemical solar cells, Russ. J. Electrochem., 2002, vol. 38, p. 378.
  7. Paracchino, A., Mathews, N., Hisatomi, T., Stefik, M., Tilley, S.D., and Grätzel, M., Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability, Energy Environ. Sci., 2012, vol. 5, p. 8673
  8. An, X., Li, K., and Tang, J., Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2, Chem. Sus. Chem., 2014, vol. 7, p. 1086.
  9. Dong, X., Wang, K., Zhao, C., Qian, X., Chen, S., Li, Z., Liu, H., and Dou, S., Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors, J. Alloys Compd., 2014, vol. 586, p. 745.
  10. Liu, S.-H. and Yang, S.-W., Highly efficient cuprous oxide nanocrystals assisted with graphene for decolorization using visible light, Water, Air, Soil Pollut., 2018, vol. 229, p. 67.
  11. Qiu, X.-y., Liu, S.-j., and Xu, D.-z., Yolk-shell structured Cu2O as a high-performance cathode catalyst for the rechargeable Li-O2 batteries, J. Mater. Sci., 2018, vol. 53, p. 1318.
  12. Kristin, B., Heine, N.R., Sandeep, G., Per, F.L., Ingvild, J.T.J., Anette, E.G., Augustinas, G., Spyros, D., Bengt, G.S., and Edouard, M., Improving carrier transport in Cu2O thin films by rapid thermal annealing, J. Phys.: Condens. Matter, 2018, vol. 30, p. 075702.
  13. Rajesh Kumar, B., Hymavathi, B., and Subba Rao, T., Structural and optical properties of nanostructured Cu2O thin films for optoelectronic devices, Mater. Today: Proc., 2017, vol. 4, p. 3903.
  14. Ma, Q.-B., Hofmann, J.P., Litke, A., and Hensen, E.J.M., Cu2O photoelectrodes for solar water splitting: tuning photoelectrochemical performance by controlled faceting, Solar Energy Mater. Solar Cells, 2015, vol. 141, p. 178.
  15. Deng, X., Zhang, Q., Zhao, Q., Ma, L., Ding, M., and Xu, X., Effects of architectures and H2O2 additions on the photocatalytic performance of hierarchical Cu2O nanostructures, Nanoscale Res. Lett., 2015, vol. 10, p. 8.
  16. Paracchino, A., Laporte, V., Sivula, K., Gratzel, M., and Thimsen, E., Highly active oxide photocathode for photoelectrochemical water reduction, Nature Mater., 2011, vol. 10, p. 456.
  17. Luo, J., Steier, L., Son, M.-K., Schreier, M., Mayer, M.T., and Grätzel, M., Cu2O nanowire photocathodes for efficient and durable solar water splitting, Nano Lett., 2016, vol. 16, p. 1848.
  18. Azevedo, J., Tilley, S.D., Schreier, M., Stefik, M., Sousa, C., Araujo, J.P., Mendes, A., Grätzel, M., and Mayer, M.T., Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes, Nano Energy, 2016, vol. 24, p. 10.
  19. Pavan, M., Rühle, S., Ginsburg, A., Keller, D.A., Barad, H.-N., Sberna, P.M., Nunes, D., Martins, R., Anderson, A.Y., Zaban, A., and Fortunato, E., TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis, Solar Energy Mater. Solar Cells, 2015, vol. 132, p. 549.
  20. Wang, W., Huang, X., Wu, S., Zhou, Y., Wang, L., Shi, H., Liang, Y., and Zou, B., Preparation of pn junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity, Appl. Catal. B: Environ., 2013, vol. 134, p. 293.
  21. Liu, Y., Zhang, W., Bian, L., Liang, W., Zhang, J., and Yu, B., Structure, morphology and photocatalytic activity of Cu2O/Pt/TiO2 three-layered nanocomposite films, Mater. Sci. Semicond. Processing, 2014, vol. 21, p. 26.
  22. Kargar, A., Partokia, S.S., Niu, M.T., Allameh, P., Yang, M., May, S., Cheung, J.S., Sun, K., Xu, K., and Wang, D., Solution-grown 3D Cu2O networks for efficient solar water splitting, Nanotechnology, 2014, vol. 25, p. 205401.
  23. Wu, G., Zhai, W., Sun, F., Chen, W., Pan, Z., and Li, W., Morphology-controlled electrodeposition of Cu2O microcrystalline particle films for application in photocatalysis under sunlight, Mater. Res. Bull., 2012, vol. 47, p. 4026.
  24. Mahalingam, T., Chitra, J., Ravi, G., Chu, J., and Sebastian, P., Characterization of pulse plated Cu2O thin films, Surf. Coat. Technol., 2003, vol. 168, p. 111.
  25. Hu, F., Chan, K., Yue, T., and Surya, C., Electrochemical synthesis of transparent nanocrystalline Cu2O films using a reverse potential waveform, Thin Solid Films, 2014, vol. 550, p. 17.
  26. Dubale, A.A., Su, W.-N., Tamirat, A.G., Pan, C.-J., Aragaw, B.A., Chen, H.-M., Chen, C.-H., and Hwang, B.-J., The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting, J. Mater. Chem. A, 2014, vol. 2, p. 18383.
  27. Yang, Y., Li, Y., and Pritzker, M., Control of Cu2O film morphology using potentiostatic pulsed electrodeposition, Electrochim. Acta, 2016, vol. 213, p. 225.
  28. Moharam, M., Elsayed, E., Nino, J., Abou-Shahba, R., and Rashad, M., Potentiostatic deposition of Cu2O films as p-type transparent conductors at room temperature, Thin Solid Films, 2016, vol. 616, p. 760.
  29. Grujicic, D. and Pesic, B., Electrodeposition of copper: the nucleation mechanisms, Electrochim. Acta, 2002, vol. 47, p. 2901.
  30. Lai, Y., Liu, F., Li, J., Zhang, Z., and Liu, Y., Nucleation and growth of selenium electrodeposition onto tin oxide electrode, J. Electroanal. Chem., 2010, vol. 639, p. 187.
  31. Messaoudi, O., Gannouni, M., Souissi, A., Makhlouf, H., Bardaoui, A., and Chtourou, R., Structural, morphological and electrical characteristics of electrodeposited Cu2O: effect of deposition time, Appl. Surf. Sci., 2016, vol. 366, p. 383.
  32. Yang, Y., Li, Y., and Pritzker, M., Control of Cu2O film morphology using potentiostatic pulsed electrodeposition, Electrochim. Acta, 2016, vol. 213, p. 225.
  33. Liu, Y., Liu, Y., Mu, R., Yang, H., Shao, C., Zhang, J., Lu, Y., Shen, D., and Fan, X., The structural and optical properties of Cu2O films electrodeposited on different substrates, Semicond. Sci. Technol., 2004, vol. 20, p. 44.
  34. Cao, D., Nasori, N., Wang, Z., Wen, L., Xu, R., Mi, Y., and Lei, Y., Facile surface treatment on Cu2O photocathodes for enhancing the photoelectrochemical response, Appl. Catal. B: Environ., 2016, vol. 198, p. 398.
  35. Shi, W., Zhang, X., Li, S., Zhang, B., Wang, M., and Shen, Y., Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity, Appl. Surf. Sci., 2015, vol. 358, p. 404.
  36. Paracchino, A., Brauer, J.C., Moser, J.-E., Thimsen, E., and Graetzel, M., Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy, J. Phys. Chem. C, 2012, vol. 116, p. 7341.
  37. Rajendran, R., Yaakob, Z., Teridi, M.A.M., Rahaman, M.S.A., and Sopian, K., Preparation of nanostructured p-NiO/n-Fe2O3 heterojunction and study of their enhanced photoelectrochemical water splitting performance, Mater. Lett., 2014, vol. 133, p. 123.
  38. Badia-Bou, L., Mas-Marza, E., Rodenas, P., Barea, E.M., Fabregat-Santiago, F., Gimenez, S., Peris, E., and Bisquert, J., Water oxidation at hematite photoelectrodes with an iridium-based catalyst, J. Phys. Chem. C, 2013, vol. 117, p. 3826.
  39. Annamalai, A., Kannan, A.G., Lee, S.Y., Kim, D.-W., Choi, S.H., and Jang, J.S., Role of graphene oxide as a sacrificial interlayer for enhanced photoelectrochemical water oxidation of hematite nanorods, J. Phys. Chem. C, 2015, vol. 119, p. 19996.
  40. Grez, P., Herrera, F., Riveros, G., Henríquez, R., Ramírez, A., Muñoz, E., Dalchiele, E., Celedón, C., and Schrebler, R., Synthesis and characterization of p‑Cu2O nanowires arrays, Mater. Lett., 2013, vol. 92, p. 413.
  41. Das, V.D. and Damodare, L., A study of substrate variation effects on the properties of n-CdSeo0.7Te0.3 thin film/polysulphide photoelectrochemical solar cells, Mater. Chem. Phys., 1998, vol. 56, p. 48.