Examples



mdbootstrap.com



 
Статья
2021

Thermal Decomposition of [Cu(H2O)2(C8H4O4)], [CuNi(H2O)4(C8H4O4)2], and [Ni(H2O)2(C8H4O4)2](H2O)2 with the Formation of Metal and Bimetal Nanoparticles


L. I. YudanovaL. I. Yudanova, A. V. IshchenkoA. V. Ishchenko, N. A. RudinaN. A. Rudina
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421080318
Abstract / Full Text

A comparison is made of the thermoanalytical characteristics and the composition and structure of solid products of the thermal decomposition of ortho-phthalates [Cu(H2O)2(C8H4O4)], [CuNi(H2O)4(C8H4O4)2], and [Ni(H2O)2(C8H4O4)](H2O)2. It is found that the thermal decomposition of these compounds upon heating to 500°C in a He atmosphere can be conditionally divided into two stages: dehydration and decarboxylation. Polymer conglomerates containing uncoated Cu nanoparticles as large as 75 nm are embedded into the polymer matrix of the composite obtained via the thermal decomposition of [Cu(H2O)2(C8H4O4)]. Three types of nanoparticles with sizes of 40–85, 15–25, and 10–15 nm are embedded in the polymer matrices of composites. The particles are Cux/Ni1−x solid solutions of different compositions, obtained via the thermolysis of [CuNi(H2O)4(C8H4O4)2]. It is found that the onset temperature of [CuNi(H2O)4(C8H4O4)2] decarboxylation at the third part of the second stage with the formation of a three-phase region correlates with the temperature of decomposition of Cux/Ni1 – x solid solutions in the binary metal system, due apparently to the quantum size effect.

Author information
  • Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, RussiaL. I. Yudanova
  • Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, RussiaA. V. Ishchenko & N. A. Rudina
References
  1. A. D. Pomogailo and V. N. Kestelman, Metallopolymer Nanocomposites (Springer, Berlin, 2005).
  2. Low Dimensional Magnetism, Ed. by A. N. Vasil’ev, O. S. Volkova, E. A. Zvereva, and M. M. Markina (Fizmatlit, Moscow, 2018) [in Russian].
  3. Yu. V. Popov, V. M. Mokhov, D. N. Nebykov, et al., Nanocatalysis in Modern Chemistry and Chemical Technology (VolgGTU, Volgograd, 2016) [in Russian].
  4. Physics at the Turn of the Millennium. Physical Phenomena of Micro- and Nanoscale, Ed. by V. K. Voronov, A. V. Podoplelov, and R. Z. Sagdeev (URSS, Moscow, 2018) [in Russian].
  5. K. J. Carrol, S. Calvin, T. F. Ekiert, et al., Chem. Mater. 22, 2175 (2010).
  6. L. I. Yudanova, V. A. Logvinenko, L. A. Sheludyakova, I. V. Korol’kov, A. V. Ishchenko, and N. A. Rudina, Russ. J. Coord. Chem. 43, 446 (2017).
  7. L. I. Yudanova, V. A. Logvinenko, A. V. Ishchenko, and N. A. Rudina, Russ. J. Phys. Chem. A 94, 2108 (2020).
  8. G. Adiwidjaja, E. Rossmanith, and H. Küppers, Acta Crystallogr., B 34, 3079 (1978).
  9. H. Küppers, Z. Kristallogr. 192, 97 (1990).
  10. B. M. Karjuki and W. Jones, Acta Crystallogr., C 49, 2100 (1993).
  11. G. Adiwidjaja and H. Küppers, Acta Crystallogr., B 32, 1571 (1976).
  12. L. I. Yudanova, V. A. Logvinenko, N. F. Yudanov, N. A. Rudina, A. V. Ishchenko, I. V. Korol’kov, P. P. Semyannikov, L. A. Sheludyakova and N. I. Alferova, Russ. J. Phys. Chem. A 90, 1206 (2016).
  13. M. Cingi, C. Guastini, A. Musatti, and M. Nardelli, Acta Crystallogr., B 25, 1833 (1969).
  14. B. N. Rodrigues, M. D. D. Costa, and N. G. Fernandes, Acta Crystallogr., C 55, 1997 (1999).
  15. M. B. Cingi, A. M. M. Lanfredi, A. Tiripicchio, and M. T. Camellini, Acta Crystallogr., B 34, 134 (1978).
  16. State Diagrams of Binary Metallic Systems, The Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 2001), Vol. 2 [in Russian].
  17. F.-Ch. Chou, Appl. Phys. Rev. 6, 011304 (2019). https://doi.org/10.1063/1.5066031