A New Type of Microtubular Oxygen Permeable Membranes Fabricated by Phase Inversion with the Use of Additive Manufacturing Technologies

I. V. Kovalev I. V. Kovalev , V. P. Sivcev V. P. Sivcev , P. D. Guskov P. D. Guskov , M. P. Popov M. P. Popov , A. P. Nemudry A. P. Nemudry
Российский электрохимический журнал
Abstract / Full Text

The characteristics of microtubular oxygen-permeable membranes fabricated with the use of a new method of low-temperature phase inversion are shown. As the membrane material, a modification of the well-known La0.6Sr0.4Co0.2Fe0.8O3 – δ composite doped with Mo cations at B site (Mo+6 = 0.05) is studied for the first time.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

    I. V. Kovalev, V. P. Sivcev, P. D. Guskov, M. P. Popov & A. P. Nemudry

  1. Teraoka, Y., Zhang, H.M., Furukawa, S., and Yamazoe N., Oxygen permeation through perovskite-type oxides, Chem. Lett., 1985, p. 1743.
  2. Shao, Z. et al., Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3 – δ oxygen membrane, J. Membr. Sci., 2000, vol. 172, p. 177.
  3. Asadi, A.A. et al., Preparation and oxygen permeation of La0.6Sr0.4Co0.2Fe0.8O3 – δ (LSCF) perovskite-type membranes: experimental study and mathematical modeling, Ind. Eng. Chem. Res., 2012, vol. 51, no. 7, p. 3069.
  4. Belenkaya, I.V., Matvienko, A.A., and Nemudry, A.P., Phase transitions and microstructure of ferroelastic MIEC oxide SrCo0.8Fe0.2O2.5 doped with highly charged Nb/Ta (v) cations, J. Mater. Chem. A, 2015, vol. 3, no. 46, p. 23240.
  5. Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., and Lin, Y.S., Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci. 2008, vol. 320, p. 13.
  6. Marques, F.M.B., Kharton, V.V., Naumovich, E.N., Shaula, A.L., Kovalevsky, A.V., and Yaremchenko, A.A., Oxygen ion conductors for fuel cells and membranes: selected developments, Solid State Ionics, 2006, vol. 177, p. 1697.
  7. Pei, S., Kleefisch, M., Kobylinski, T.P., Faber, J., Udovich, C.A., Zhang-McCoy, V., Dabrowski, B., Balachandran, U., Mieville, R.L., and Poeppel, R.B., Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas, Catal. Lett., 1994, vol. 30, p. 201.
  8. Ten Elshof, J.E., van Hassel, B.A., and Bouwmeester, H.J.M., Activation of methane using solid oxide membranes, Catal. Today, 1995, vol. 25, p. 397.
  9. Leo, A., Liu, Sh., and Diniz da Costa, J.C., Development of mixed conducting membranes for clean coal energy delivery, Int. J. Greenhouse Gas Control, 2009, vol. 3, p. 357.
  10. Mahato, N. et al., Progress in material selection for solid oxide fuel cell technology: A review, Prog. Mater. Sci., 2015, vol. 72, p. 141.
  11. Popov, M.P., Bychkov, S.F., and Nemudry, A.P., Direct AC heating of oxygen transport membranes, Solid State Ionics, 2017, vol. 312, p. 73.
  12. Wang, H., Cong, Y., and Yang, W., Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3 – δ oxygen permeable membrane, J. Membr. Sci., 2002, vol. 210, no. 2, p. 259.
  13. Yang, N.T., Kathiraser, Y., and Kawi, S., A new asymmetric SrCo0.8Fe0.1Ga0.1O3 – δ perovskite hollow fiber membrane for stable oxygen permeability under reducing condition, J. Membr. Sci., 2013, vol. 428, p. 78.
  14. Othman, M.H.D. et al., High-performance, anode-supported, microtubular SOFC prepared from single-step-fabricated, dual-layer hollow fibers, Adv. Mater., 2011, vol. 23, no. 21, p. 2480.
  15. Pusz, J., Mohammadi, A., and Sammes, N.M., Fabrication and performance of anode-supported micro-tubular solid oxide fuel cells, J. Electrochem. Energy Convers. Storage, 2006, vol. 3, p. 482.
  16. Mahata, T. et al., Fabrication of Ni–YSZ anode supported tubular SOFC through iso-pressing and co-firing route, Int. J. Hydrogen Energy, 2012, vol. 37, no. 4, p. 3874.
  17. Zhang, L. et al., Fabrication and characterization of anode-supported tubular solid-oxide fuel cells by slip casting and dip coating techniques, J. Am. Ceram. Soc., 2009, vol. 92, no. 2, p. 302.
  18. The CRC Handbook of Solid-state Electrochemistry, Gellings, P.J. and Bouwmeester, H.J.M. (Eds.), Boca Raton: CDC, 1997, no. 544.6 CRC, pp. 481–553.
  19. Orlovskaya, N., Browning, N., and Nicholls, A., Ferroelasticity and hysteresis in mixed conducting perovskites, Acta Mater., 2003, vol. 51, p. 5063.
  20. Lein, H.L. et al., Mechanical properties of mixed conducting La0.5Sr0.5Fe1 – xCoxO3 – δ (0 ≤ x ≤ 1) materials, J. Solid State Electrochem., 2006, vol. 10, p. 635.
  21. Savinskaya, O. and Nemudry, A., Oxygen transport properties of nanostructured SrFe1 – xMoxO2.5 + 3/2x (0 < x < 0.1) perovskite, J. Solid State Electrochem., 2011, vol. 15, p. 269.
  22. Belenkaya, I., Matvienko, A., and Nemudry, A., Ferroelasticity of SrCo0.8Fe0.2O3 – δ perovskite-related oxide with mixed ion-electron conductivity, J. Appl. Crystallogr., 2015, vol. 48, p. 179.
  23. Voloshin, B.V., Koshevoi, E.I., Ulikhin, A.S., Popov, M.P., and Nemudryi, A.P., Modifying the La0.6Sr0.4Co0.2Fe0.8O3 – δ cathodic material by ferroactive molybdenum cation, Russ. J. Electrochem., 2022, vol. 58, p. 163.