Статья
2018

Detrending and Other Features of Data Processing in the Measurements of Electrochemical Noise


E. A. Astafev E. A. Astafev , A. E. Ukshe A. E. Ukshe , L. S. Leonova L. S. Leonova , R. A. Manzhos R. A. Manzhos , Yu. A. Dobrovolsky Yu. A. Dobrovolsky
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518120030
Abstract / Full Text

Measurements of electrochemical noise in solid-state electrochemical cells with a heteropolycompound- based electrolyte are carried out. The noise power spectral density is calculated using various detrending methods. The impedance real component is calculated by means of the Nyquist formula. The results of the calculations are compared with the data obtained by the electrochemical impedance classical method.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    E. A. Astafev, A. E. Ukshe, L. S. Leonova, R. A. Manzhos & Yu. A. Dobrovolsky

References
  1. Knott, K.F., Measurement of battery noise and resistor-current noise at subaudio frequencies, Electron. Lett., 1965, vol. 1, p. 132. doi 10.1049/el:19650123
  2. Tyagai, V.A. and Luk’yanchikova, N.B., Equilibrium fluctuations in electrochemical processes, Elektrokhimiya, 1967, vol. 3, p. 316.
  3. Tyagai, V.A., Faradaic noise of complex electrochemical reactions, Electrochim. Acta, 1971, vol. 16, p. 1647. doi 10.1016/0013-4686(71)85075-2
  4. Grafov, B.M., On the equilibrium fluctuations in a stationary state, Elektrokhimiya, 1966, vol. 2, p. 1249.
  5. Grafov, B.M. and Levich, V.G., On the fluctuationdissipation theorem in a stationary state, Sov. Phys.-JETP, 1968, vol. 54, p. 507.
  6. Nyquist, H., Thermal agitation of electric charge in conductors, Phys. Rev., 1928. vol. 32, p. 110. doi 1103/PhysRev.32.110
  7. Luk’yanchikova, N.B. and Garbar, N.P., Experimental setup for measurements of low-frequency noise spectrum of photocurrent in semiconductors, Pribory i Tekhnika Eksperimenta, 1966, no. 2, p. 178.
  8. Grafov, B.M., Dobrovol’skii, Yu.A., Davydov, A.D., Ukshe, A.E., Klyuev, A.L., and Astaf’ev, E.A., Electrochemical noise diagnostics: Analysis of algorithm of orthogonal expansions, Russ. J. Electrochem., 2015, vol. 51, p. 503. doi 10.1134/S1023193515060063
  9. Klyuev, A.L., Davydov, A.D., Grafov, B.M., Dobrovolskii, Yu.A., Ukshe, A.E., and Astaf’ev, E.A., Electrochemical noise spectroscopy: Method of secondary Chebyshev spectrum, Russ. J. Electrochem., 2016, vol. 52, p. 1001. doi 10.1134/S1023193516100062
  10. Astaf’ev, M.G., Kanevskii, L.S., and Grafov, B.M., Analyzing electrochemical noise with Chebyshev’s discrete polynomials, Russ. J. Electrochem., 2007, vol. 43, p. 17. doi 10.1134/S102319350701003X
  11. Cottis, R.A., Homborg, A.M., and Mol, J.M.C., The relationship between spectral and wavelet techniques for noise analysis, Electrochim. Acta, 2016, vol. 202, p. 277. doi 10.1016/j.electacta.2015.11.148
  12. Grafova, I.B. and Grafov, B.M., Meixner wavelet transform: A tool for studying stationary discrete-time stochastic processes, Russ. J. Electrochem., 2003, vol. 39, p. 130. doi 10.1023/A:1022348606667
  13. Callen, H.B. and Welton, T.A., Irreversibility and generalized noise, Phys. Rev., 1951, vol. 83, p. 34. doi 10.1103/PhysRev.83.34
  14. Boukamp, B.A., A linear Kronig-Kramers transform test for immittance data validation, J. Electrochem. Soc., 1995, vol. 142, p. 1885. doi 10.1149/1.2044210
  15. Bertocci, U., Huet, F., Nogueira, R.P., and Rousseau, P., Drift removal procedures in the analysis of electrochemical noise, Corrosion, 2002, vol. 58, p. 337. doi 10.5006/1.3287684
  16. Homborg, A.M., Tinga, T., Zhang, X., van Westing, E.P.M., Oonincx, P.J., de Wit, J.H.W., and Mol, J.M.C., Time–frequency methods for trend removal in electrochemical noise data, Electrochim. Acta, 2012, vol. 70, p. 199. doi 10.1016/j.electacta.2012.03.062
  17. Mansfeld, F., Sun, Z., Hsu, C.H., and Nagiub, A., Concerning trend removal in electrochemical noise measurements, Corr. Sci., 2001, vol. 43, p. 341. doi 10.1016/S0010-938X(00)00064-0
  18. Xia, D.-H. and Behnamian, Y., Electrochemical noise: A review of experimental setup, instrumentation and DC removal, Russ. J. Electrochem., 2015, vol. 51, p. 593. doi 10.1134/S1023193515070071
  19. Kanevskii, L.S., Study and diagnostics of lithium current sources by electrochemical noise method. I. Dynamics of lithium electrode electrochemical noise in aprotic organic electrolytes, Elektrokhimicheskaya Energetika, 2008, vol. 8, p. 92.
  20. Boyd, J.P., Chebyshev and Fourier spectral methods, Heidelberg: Springer, 1989.
  21. Astafev, E.A., Ukshe, A.E., Manzhos, R.A., Dobrovolsky, Yu.A., Lakeev, S.G., and Timashev, S.F., Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1742. doi 10.20964/2017.03.56
  22. Roberge, P. and Beaudoin, R., Voltage noise measurements on sealed lead-acid batteries, J. Power Sources, 1989, vol. 27, p. 177. doi 10.1016/0378-7753(89)80131-4
  23. Evdokimov, Yu.K., Denisov, E.S., and Martemianov, S.A., Electrical noise of hydrogen fuel cell and diagnostic characteristic research, Nelineyniy Mir, 2009, vol. 7, p. 706.
  24. Martemianov, S., Adiutantov, N., Evdokimov, Yu.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid. State. Electrochem., 2015, vol. 19. p. 2803. doi 10.1007/S10008-015-2855-2
  25. Baert, D.H.J. and Vervaet, A.A.K., Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 2003, vol. 114, p. 357. doi 10.1016/S0378-7753(02)00599-2
  26. Tyagai, V.A., Study of non-equilibrium electrochemical noise of the Pt–I–/ system, Elektrokhimiya, 1967, vol. 3, p. 1331.
  27. Tyagai, V.A. and Kolbasov, G.Ya., On the nature of non-equilibrium noise in the Pt-iodine-iodide system, Elektrokhimiya, 1970, vol. 6, p. 123.
  28. Tyagai, V.A., Noise in electrochemical systems, Elektrokhimiya, 1974, vol. 10, p. 3.
  29. Mansfeld, F., Lee, C.C., and Zhang, G., Comparison of electrochemical impedance and noise data in frequency domain, Electrochim. Acta, 1998, vol. 43, p. 435. doi 10.1016/S0013-4686(97)00060-1
  30. Singh, P.S. and Lemay, S.G., Stochastic processes in electrochemistry, Anal. Chem., 2016, vol. 88, p. 5017. doi 10.1021/acs.analchem.6b00683
  31. Cottis, R.A., Interpretation of electrochemical noise data, Corrosion, 2001, vol. 57, p. 265. doi 10.5006/1.3290350
  32. Astafev, E.A., Universal high-resolution device for measurements of electrochemical noises, Instruments Experimental Techniques, 2018, N 1, p. 151.
  33. Skurygin, E.F., Vorotyntsev, M.A., and Martem’yanov, S.A., Space-time fluctuations of a passive impurity concentration within the diffusion boundary layer in the turbulent flow of a fluid, J. Electroanal. Chem., 1989, vol. 259, p. 285. doi 10.1016/0022-0728(89)80052-X
  34. Treglazov, I., Leonova, L., Dobrovolsky, Yu., Ryabov, A., Vakulenko, A., and Vassiliev, S., Electrocatalytic effects in gas sensors based on low-temperature superprotonics, Sens. Actuators B, 2005, vol. 106, p. 164. doi 10.1016/j.snb.2004.05.053
  35. Ukshe, E.A. and Leonova, L.S., Potentiometric hydrogen sensors with proton conducting solid electrolytes, Russ. J. Electrochem., 1992, vol. 28, p. 1166.
  36. Smith, S.W., The Scientist and Engineer’s Guide to Digital Signal Processing, San Diego, California, U.S.: California Technical Publishing, 1999.
  37. Astafev, E.A., Ukshe, A.E., Gerasimova, E.V., Dobrovolsky, Yu.A., and Manzhos, R.A., Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads, J. Solid. State. Electrochem., 2018, vol. 22, p. 839. doi 10.1007/s10008-018-3892-4
  38. Astaf’ev, E.A., Electrochemical Noise Measurement of Polymer Membrane Fuel Cell under Load, Russ. J. Electrochem., 2018, vol. 54, p. 554. doi 10.1134/S1023193518060034