Статья
2021

Electrical Conductivity and Decomposition Potentials of the LiAsF6 Solutions in the Propylene Carbonate–N,N-Dimethylformamide Mixed Solvent


E. Yu. Tyunina E. Yu. Tyunina , M. D. Chekunova M. D. Chekunova
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521030125
Abstract / Full Text

The electrical conductivity of LiAsF6 solutions in a propylene carbonate–N,N-dimethylformamide mixed solvent is measured at temperatures of 253.15, 273.15, 293.15, 313.15, and 333.15 K, the ionophore concentration being 0.2 to 1.8 mol/kg. The N,N-dimethylformamide mole fraction in the mixed solvent varied over the 0.2–1.0 range. Concentration dependences of the system’s conductivity can be described by the Casteel–Amis equation; the ionophore solution in N,N-dimethylformamide has the highest conductivity value. The analysis of the charge transfer process in the studied system is carried out in terms of the transition state theory, by using the conductivity data obtained for LiClO4 solutions in N,N-dimethylformamide and propylene carbonate. The electrochemical window width for 0.5 m LiAsF6 solutions in the propylene carbonate–N,N-dimethylformamide mixed solvent is determined. It is restricted by the decomposition potentials: the lithium reduction from the cathodic side; the solvent oxidation, from the anodic side.

Author information
  • G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045, Ivanovo, Russia

    E. Yu. Tyunina

  • Ivanovo State Polytechnic University, 153000, Ivanovo, Russia

    M. D. Chekunova

References
  1. Rajput, N.N., Seguin, T.J., Wood, B.M., Qu, X., and Persson, K.A., Elucidating solvation structures for rational design of multivalent electrolytes—A review, Top. Curr. Chem. (Z), 2018, vol. 376, p. 19. https://doi.org/10.1007/s41061-018-0195-2
  2. Kartha, T.R. and Mallik, B.S., Revisiting LiClO4 as an electrolyte for Li-ion battery: Effect of aggregation behavior on ion-pairing dynamics and conductance, J. Mol. Liq., 2020, vol. 302, p. 112536. https://doi.org/10.1016/j.molliq.2020.112536
  3. Flores, E., Åvall, G., Jeschke, S., and Johansson, P., Solvation structure in dilute to highly concentrated electrolytes for lithium-ion and sodium-ion batteries, Electrochim. Acta, 2017, vol. 233, p. 134. https://doi.org/10.1016/j.electacta.2017.03.031
  4. Yarmolenko, O.V., Yudina, A.V., and Ignatova, A.A., The state-of-the art and prospects for the development of electrolyte systems for lithium power sources, Electrochem. Energetics, 2016, vol. 16, p. 155 (in Russian).
  5. Ignatova, A.A., Tulibaeva, G.Z., Yarmolenko, O.V., and Fateev, S.A., Electrolyte systems for primary lithium fluorocarbon power sources and their working efficiency in a wide temperature range, Russ. J. Electrochem., 2017, vol. 53, p. 292. https://doi.org/10.1134/S1023193517030077
  6. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-based Rechargeable Batteries, Chem. Rev., 2004, vol. 104, p. 4303. https://doi.org/10.1021/cr030203g
  7. Wu, F. and Wu, C., New secondary batteries and their key materials based on the concept of multi-electron reaction, Chin. Sci. Bull., 2014, vol. 59, p. 3369. https://doi.org/10.1007/s11434-014-0430-3
  8. Choudhary, Sh., Dhatarwal, P., and Sengwa, R.J., Characterization of conductivity relaxation processes induced by charge dynamics and hydrogen-bond molecular interactions in binary mixtures of propylene carbonate with acetonitrile, J. Mol. Liq., 2017, vol. 231, p. 491. https://doi.org/10.1016/j.molliq.2017.02.036
  9. Mozhzhukhina, N., Longinotti, M.P., Corti, H.R., and Calvo, E.J., A conductivity study of preferential solvation of lithium ion in acetonitrile–dimethyl sulfoxide mixtures, Electrochim. Acta, 2015, vol. 154, p. 456. https://doi.org/10.1016/j.electacta.2014.12.022
  10. Sodeyama, K., Yamada, Y., Aikawa, K., Yamada, A., and Tateyama, Y., Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte, J. Phys. Chem. C., 2014, vol. 118, p. 14091. https://doi.org/10.1021/jp501178n
  11. Cecchetto, L., Salomon, M., Scrosati, B., and Croce, F., Study of a Li–air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid, J. Power Sources, 2012, vol. 213, p. 233. https://doi.org/10.1016/j.jpowsour.2012.04.038
  12. Chernozhyk, T.V., Dubovitskaya, V.Yu., and Kalugin, O.N., Electrical conductivity and association of Bu4NBPh4 in mixtures of propylene carbonate with 1,2-dimethoxyethane, Visnik Khark. Nat. Inst. (in Ukrainian), 2009, vol. 17(40), p. 189.
  13. Karapetyan, Yu.A. and Eychic, V.N., Physico-chemical Properties of Electrolytic Non-aqueous Solutions (in Russian), Moscow: Khimiya, 1989.
  14. Logan, E.R., Tonita, E.M., Gering, K.L., Li, J., Ma, X., Beaulieu, L.Y., and Dahn, J.R., A study of physical properties of Li-ion battery electrolytes containing esters, J. Electrochem. Soc., 2018, vol. 165(2), p. A21. https://doi.org/10.1149/2.0271802jes
  15. Tyunina, E.Yu. and Chekunova, M.D., Electrochemical properties of LiAsF6 solutions in propylene carbonate–acetonitrile binary mixtures, Russ. J. Electrochem., 2019, vol. 55, p. 122. https://doi.org/10.1134/S1023193519010142
  16. Borodin, O., Polarizable force field development and molecular dynamics simulations of ionic liquids, J. Phys. Chem. B, 2009, vol. 113, p. 11463. https://doi.org/10.1021/jp905220k
  17. Afanas’ev, V.N., Zyat’kova, L.A., Tyunina, E.Yu., and Chekunova, M.D., Solvation interactions in solutions of lithium hexafluoroarsenate in propylene carbonate, Russ. J. Electrochem., 2001, vol. 37, p. 46.
  18. Afanasyev, V.N. and Zyatkova, L.A., Speed of sound, densities, and viscosities for solutions of lithium hexafluoroarsenate in tetrahydrofuran at 283.15, 298.15 and 313.15 K, J. Chem. Eng. Data, 1996, vol. 41, p. 1315. https://doi.org/10.1021/je960003k
  19. Nichugovskiy, G.F., Determination of the Humidity of Chemicals (in Russian), Leningrad: Khimiya, 1977.
  20. Tyunina, E.Yu., Chekunova, M.D., and Afanasiev, V.N., Electrochemical characteristics of propylene carbonate solutions of tetraethylammonium tetrafluoroborate, Russ. J. Electrochem., 2013, vol. 49, p. 453. https://doi.org/10.1134/S1023193513050157
  21. Gordon, A.J. and Ford, R.A., The Chemist’s Companion. A Handbook of Practical Data, Techniques, and References, New-York: Wiley, 1972.
  22. Jones, G. and Prendergast, M.J., The measurement of the conductance of electrolytes. VIII. A redetermination of the conductance of Kohlrausch’s standard potassium chloride solutions in absolute units, J. Amer. Chem. Soc., 1937, vol. 59, p. 731. https://doi.org/10.1021/ja01283a039
  23. Kolosnitsyn, V.S., Sheina, L.V., and Mochalov, S.E., Physicochemical and electrochemical properties of sulfolane solutions of lithium salts, Russ. J. Electrochem., 2008, vol. 44, p. 575. https://doi.org/10.1134/S102319350805011X
  24. Stenina, I.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Anode material based on nanosized lithium titanate, Russ. J. Inorg. Chem., 2015, vol. 60, p. 1380. https://doi.org/10.1134/S0036023615110170
  25. Tyunina, E.Yu. and Chekunova, M.D., Electrochemical properties of lithium hexafluoroarsenate in methyl acetate at various temperatures, J. Mol. Liq., 2013, vol. 187, p. 332. https://doi.org/10.1016/j.molliq.2013.08.019
  26. Tyunina, E.Yu. and Chekunova, M.D., Electrochemical properties of LiAsF6 solutions in low-polar aprotic solvents, Russ. J. Electrochem., 2015, vol. 51, p. 32. https://doi.org/10.1134/S1023193515010115
  27. Zyatkova, L.A., Afanasyev, V.N., Krestov, G.A., and Ivanova, T.V., Effect of solvent on the potentials of decomposition of lithium hexafluoroarsenate non-aqueous solutions, Russ. J. Electrochem., 1993, vol. 29, p. 946 (in Russian).
  28. Ionic Liquids: Theory and Practice (in Russian), Tsivadze, A.Yu., Ed., Ivanovo: JSC Ivanovo Publishing House, 2019.
  29. Fialkov, Yu.Ya. and Grischenko, V.F., Metal Electrodeposition from Non-aqueous Solutions (in Russian), Kiev: Naukova Dumka, 1985.
  30. Casteel, J.F. and Amis, E.S., Specific conductance of concentrated solutions of magnesium salts in water-ethanol system, J. Chem. Eng. Data, 1972, vol. 17, p. 55. https://doi.org/10.1021/je60052a029
  31. Erdey-Gruz, T., Transport Phenomena in Aqueous Solutions, Budapest: Akademiai Kiado, 1974.
  32. Glasstone, S., Laidler, K., and Eyring, H., The Theory of Rate Processes, New York: McGraw-Hill, 1941.
  33. Tyunina, E.Yu. and Chekunova, M.D., Electroconductivity of solutions of LiAsF6 in aprotic solvents with different permittivity, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. (in Russian), 2015, vol. 58, p. 112.
  34. Chagnes, A., Carré, B., Willmann, P., and Lemordant, D., Ion transport theory of nonaqueous electrolytes. LiClO4 in γ-butyrolactone: the quasilattice approach, Electrochim. Acta, 2001, vol. 46, p. 1783.
  35. Demahin, A. G., Ovsyannikov, V.M., and Ponomarenko, S.M., Electrolyte Systems for Lithium Power Sources (in Russian), Saratov: Saratov Univ., 1993.
  36. Izmailov, N.A., Electrochemistry of Solutions (in Russian), Moscov: Khimiya, 1966.
  37. Salomon, M., Conductance of solutions of lithium bis(trifluoromethanesulfone)imid in water, propylene carbonate, acetonitrile and methyl formate at 25°C, J. Solution Chem., 1993, vol. 22, no.8, p. 715.
  38. Izutsu, K., Electrochemistry in Nonaqueous Solutions, Weinheim: Wiley-VCH, 2002.
  39. Kanamura, K., Umegaki, T., Ohashi, M., Toriyama, Sh., Shiraishi, S., and Takehara, Z., Oxidation of propylene carbonate containing LiBF4 or LiPF6 on LiCoO2 thin film electrode for lithium batteries, Electrochim. Acta, 2001, vol. 47, p. 433.
  40. Leggesse, E.G., Lin, R.T., Teng, T.-F., Chen, Ch.-L., and Jiang, J.-Ch., Oxidative Decomposition of Propylene Carbonate in Lithium-Ion Batteries: A DFT Study, J. Phys. Chem. A, 2013, vol. 117, p. 7959. https://doi.org/10.1021/jp403436u
  41. Electrochemistry of Metals in Non-aqueous Solutions (in Russian), Kolotyrkin, Ya.M., Ed., Moscow: Mir, 1974.
  42. Chen, Y., Freunberger, S.A., Peng, Z., Barde,́ F., and Bruce, P.G., Li–O2 Battery with a dimethylformamide electrolyte, J. Am. Chem. Soc., 2012, vol. 134, p. 7952. https://doi.org/10.1021/ja302178w
  43. Fadel, E.R., Faglioni, F., Samsonidze, G., Molinari, N., Merinov, B.V., Goddard III, W.A., Grossman, J.C., Mailoa, J.P., and Kozinsky, B., Role of solvent-anion charge transfer in oxidative degradation of battery electrolytes, Nat. Commun., 2019, vol. 10, p. 3360. https://doi.org/10.1038/s41467-019-11317-3
  44. Tyunina, E.Yu. and Chekunova, M.D., Physicochemical properties of binary solutions of propylene carbonate–acetonitrile in the range of 253.15–313.15 K, Russ. J. Phys. Chem. A, 2017, vol. 91, p. 894. https://doi.org/10.1134/S0036024417050260