Diaphragmless Electrosynthesis of Diphenylphosphate

V. A. Zagumennov V. A. Zagumennov , I. P. Kosachev I. P. Kosachev
Российский электрохимический журнал
Abstract / Full Text

The process of mediated diaphragmless electrosynthesis (platinum anode, nickel cathode) of diphenylphosphate from diphenylphosphite with alkali metal halides (KI, LiBr) used as the mediator is studied in water‑organic (acetonitrile, benzene) medium. It is found that after passing 2 F per mole of diphenylphosphite through the electrolyte, two phosphorus-containing compounds are detected in the reaction mixture: original diphenylphosphite and target diphenylphosphate. The highest content of diphenylphosphate is observed when the electrosynthesis is carried out in the water‑acetonitrile‑benzene mixture. It is found that the excess of protons in the electrolyte accelerates the hydrolysis of original diphenylphosphite.

Author information
  • Kazan (Volga Region) Federal University, Butlerov Institute of Chemistry, 420018, Kazan, Russia

    V. A. Zagumennov

  • Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088, Kazan, Russia

    I. P. Kosachev

  1. Purdela, D. and Vîlceanu, R., Khimiya Organicheskikh Sordinenii Fosfora (Chemistry of organic compounds of phosphorus), Moscow: Khimiya, 1972.
  2. Bukhtiarov, A.V., Mikheev, V.V., Lebedev, A.V., and Kudryavtsev, Y.G., Cathodic cleavage of the P–H bond. Electrochemical reduction of dialkylphosphites, Zh. Obshch. Khim., 1991, vol. 61, p. 889.
  3. Petrosyan, V.A. and Niyazymbetov, M.E., Cathodic alkylation of dialkyl and diaryl phosphates, Bull. Acad. Sci. USSR. Div. Chem. Sci. (Engl. Transl.), 1988, vol. 37, p. 1744.
  4. Pavlichenko, V.F., Presnov, A.E., and Tomilov, A.P., Electrochemical synthesis of O,O'-dimethylphosphites with metal-phosphorus bond, Russ. J. Electrochem., 1995, vol. 31, p. 493.
  5. Tomilov, A.P., Osadchenko, I.M., and Khudenko, A.V., Electrochemical syntheses based on elemental phosphorus and phosphorous esters, Russ. Chem. Rev., 1996, vol. 65, p. 1080.
  6. Nikitin, E.V., Romakhin, A.S., Parakin, O.V., Ignat’ev, Yu.A., Romanov, G.V., Kargin, Yu.M., and Pudovik, A.N., A new electrophilic reaction in series of the organo-phosphorus compounds, Dokl. Akad. Nauk SSSR, 1981, vol. 258, p. 678.
  7. Romakhin, A.S., Babkin, Y.A., Khusainova, D.R., Nikitin, E.V., and Kargin, Y.M., Competitive reactions method in electrochemistry—a new tool for investigating the anodic intermediates reactivity, Electrochim. Acta, 1989, vol. 34, p. 1417.
  8. Romakhin, A.S., Parakin, O.V., Nikitin, E.V., Ignat’ev, Yu.A., Zagumennov, V.A., Romanov, G.V., Kargin, Yu.M., and Pudovik, A.N., Electrochemical synthesis of tetraalkylpyrophosphites, Zh. Obshch. Khim., 1985, vol. 55, p. 2208.
  9. Romakhin, A.S., Zagumennov, V.A., and Nikitin, E.V., Attachment of electrochemically generated phosphone-radicals to phenylacetylene, Zh. Obshch. Khim., 1995, vol. 65, p. 1229.
  10. Romakhin, A.S., Zagumennov, V.A., and Nikitin, E.V., Electrochemical oxidation of metal dialkyl phosphites and their reaction with halogens, Russ. J. Gen. Chem., 1997, vol. 67, no. 7, p. 1022.
  11. Romakhin, A.S., Kosachev, I.P., Zagumennov, V.A., and Nikitin, E.V., Free-radical phosphorylation of olefins initiated by anodic oxidation, Russ. J. Gen. Chem., 1997, vol. 67, no. 2, p. 227.
  12. Zagumennov, V.A., Nikitin, E.V., Romakhin, A.S., and Kosachev, I.P., Electrochemical activation of chain radical processes by radical organophosphorus cations, Russ. J. Electrochem., 2000, vol. 36, p. 140.
  13. Nikitin, E.V. and Zagumennov, V.A., Initiation of homolytic addition to alkenes by means of organophosphorus radical-cations, Electrochim. Acta, 2000, vol. 45, p. 3983.
  14. Romakhin, A.S., Kosachev, I.P., Nikitin, E.V., Ignat’ev, Yu.A., Kargin, Yu.M., and Pudovik, A.N., Electrocatalyzed phosphorylation of olefins, Dokl. Akad. Nauk SSSR, 1987, vol. 294, no. 6, p. 1413.
  15. Ogawa, T., Nakazono, K., Aoki, D., Uchida, S., and Takata, T., Effective approach to cyclic polymer from linear polymer: Synthesis and transformation of macromolecular[1]rotaxane, ACS Macro Lett., 2015, vol. 4, p. 343.
  16. Wang, X., Liu, J., Xu, S., Xu, J., Pan, X., Liu, J., Cui, S., Li, Z., and Guo, K., Traceless switch organocatalysis enables multiblock ring-opening copolymerizations of lactones, carbonates, and lactides: by a one plus one approach in one pot, Polym. Chem., 2016, vol. 7, p. 6297.
  17. Mullemwar, S., Zade, G., Kalyani, N.T., and Dhoble, S., Blue light emitting P-hydroxy DPQ phosphor for OLEDs, Optik (Weimar), 2016, vol. 127, p. 10546.
  18. Khemchandani, B., Somers, A., Howlett, R., Jaiswal, A.K., Sayanna, E., and Forsyth, M., A biocompatible ionic liquid as an antiwear additive for biodegradable lubricants, Tribol. Int., 2014, vol. 77, p. 171.
  19. Kuroda-Sowa, T., Fukuda, S., Miyoshi, S., Maekawa, M., Munakata, M., Miyasaka, H., and Yamashita, M., A chemical modification of a Mn-12 single-molecule magnet by replacing carboxylate anions with diphenylphosphate anions, Chem. Lett, 2002, vol. 7, p. 682.
  20. Nam, N.D., Hien, P.V., Hoai, N.T., and Thu, V.T.H., A study on the mixed corrosion inhibitor with a dominant cathodic inhibitor for mild steel in aqueous chloride solution, J. Taiwan Inst. Chem. Eng., 2018, vol. 91, p. 556.
  21. van der Veen, I. and de Boer, J., Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis, Chemosphere, 2012, vol. 88, p. 1119.
  22. Lacasse, M.-Ch., Poulard, C., and Charette, A.B., Iodomethylzinc phosphates: Powerful reagents for the cyclopropanation of alkenes, JACS, 2005, vol. 127, no. 36, p. 12440.
  23. Li, B.-J., Simard, R.D., and Beauchemin, A.M., o‑Phtalaldehyde catalysed hydrolysis of organophosphinic amides and other P(=O)–NH containing compounds, Chem. Commun, 2017, vol. 53, no. 62, p. 8667.
  24. Nifant’ev, I.E., Tavtorkin, A.N., Korchagina, S.A., Gavrilenko, I.F., Glebova, N.N., Kostitsyna, N.N., Yakovlev, V.A., Bondarenko, G.N., and Filatova, M.P., Neogium tris-diarylphosphates: Systematic study of the structure—reactivity relationship in butadiene and isoprene polymerization, Appl. Catal., A, 2014, vol. 478, p. 219.
  25. Knier, B.L., Durst, H.D., Burnside, B.A., Mackay, R.A., and Longo, F.R., Catalytic hydrolysis of phosphate esters in microemulsions, J. Solution Chem., 1988, vol. 17, no. 1, p. 77.
  26. Kabachnik, M.I., Zakharov, L.S., Molchanova, G.N., Drozdova, T.D., and Petrovskii, P.V., Synthesis of silicon-containing esters of phosphorus acids and study of their thermal stability. 3. Thermal rearrangement of triorganosilylmethyl esters of diphenylphosphoric acid, Bull. Acad. Sci. USSR. Div. Chem. Sci. (Engl. Transl.), 1989, vol. 38, no. 7, p. 1527.
  27. Epstein, W.W. and Garrossian, M., p-Methoxyphenacyl esters as photodeblockable protecting groups for phosphates, JCS Chem. Comm., 1987, no. 8, p. 532.
  28. Petrov, K.A., Nifant’ev, E.E., and Lysenko, T.I., New synthesis of dualkylphosphates, Zh.Obshch. Khim., 1961, vol. 31, no. 6, p. 1709.
  29. Wada, T., Ishukawa, K., and Hata, T., Nucleoside 3'‑N,N-dialkykphosphonamidates: novel building blocks for oligonucleotide synthesys, Tetrahedron Lett., 1990, vol. 31, p. 6363.
  30. Kormachev, V.V. and Fedoseev, M.S., Preparativnaya khimiya fosfora, (Preparative chemistry of phosphorus), Perm: Ural Otd. RAN, 1992.
  31. Arbuzov, A.E., Izbrannye trudy (Selected Works), Moscow: Nauka, 1976.
  32. Crutchfield, M.M., Dungan, C.H., Letcher, J.H., Mark, V., and Van Waser, J.R., 31P Nuclear magnetic resonance, in Topics in Phosphorus Chemistry, Van Waser, J.R., Ed., New York: Interscience-Wiley, 1963.
  33. Petrov, K.A., Nifant’ev, E.E., Goltsova, R.A., Shchegolev, A.A., and Bushmin, B.V., Synthesis and reetherification of diphenylphosphite, Zh. Obshch. Khim., 1962, vol. 32, no. 11, p. 3723.
  34. Kluev, B.L., Libman, B.Ya., and Tomilov, A.P., USSR Patent 601284, 1975.