Статья
2019

Multiwalled Carbon Nanotubes β-Cyclodextrin Modified Electrode for Electrochemical Determination of Bisphenol S in Water Samples


H. Filik H. Filik , A. A. Avan A. A. Avan , E. K. Yetimoğlu E. K. Yetimoğlu
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519010038
Abstract / Full Text

A voltammetric sensor for the determination of bisphenol S (BPS) in aqueous samples was fabricated by immobilization of β-cyclodextrin/multiwalled carbon nanotubes onto the surface of glassy carbon electrode (β-CD/MWCNTs/GCE). The quantitative determination of BPS was investigated by square wave voltammetry (SWV) and the important analytical characteristics of the β-CD/MWCNTs/GCE was examined for the detection of bisphenol S. In addition, the predominant experimental factors affecting the voltammetric efficiency were studied. The voltammetric behavior of the β-CD/MWCNTs electrode in the presence of the BPS was studied, and an irreversible oxidation peak current was obtained at about 0.9 V versus Ag/AgCl. The fabricated electrode exhibited a sufficient linear range from 0.5 to 60 µM BPS and the limit of detection of the sensor was found to be 0.05 µM (S/N = 3). Additionally, the applicability of the detailed electrochemical sensor was investigated to determine BPS in tap water and drinking water samples.

Author information
  • Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, 34320, Turkey

    H. Filik & A. A. Avan

  • Faculty of Arts and Science, Department of Chemistry, Marmara University, Kadıköy, Istanbul, 34722, Turkey

    E. K. Yetimoğlu

References
  1. Rochester, J.R., Bisphenol A and human health: a review of the literature, Reprod. Toxicol., 2013, vol. 42, p. 132.
  2. Kinch, C.D., Ibhazehiebo, K., Jeong, J.H., Habibi, H.R., and Kurrasch, D.M., Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, p. 1475.
  3. Toussaint, C.H., Peyre, L., Costanzo, C., Chagnon, M.C., and Rahmani, R., Is bisphenol S a safe substitute for bisphenol A in terms of metabolic function. An in vitro study, Toxicol. Appl. Pharm., 2014, vol. 280, p. 224.
  4. Mathew, M., Sreedhanya, S., Manoj, P., Aravindakumar, C.T., and Aravind, U.K., Exploring the interaction of bisphenol-S with serum albumins: a better or worse alternative for bisphenol A, J. Phys. Chem. B, 2014, vol. 118, p. 3832.
  5. Vela-Soria, F., Ballesteros, O., Zafra-Gómez, A., Ballesteros, L., and Navalón, A., UHPLC-MS/MS method for the determination of bisphenol A and its chlorinated derivatives, bisphenol S, parabens, and benzophenones in human urine samples, Anal. Bioanal. Chem., 2014, vol. 406, p. 3773.
  6. Yang, Y.J., Lu, L.B., Zhang, J., Yang, Y., Wu, Y.N., and Shao, B., Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography-electrospray tandem mass spectrometry, J. Chromatogr. A, 2014, vol. 1328, p. 26.
  7. Gallart-Ayala, H., Moyano, E., and Galceran, M.T., Analysis of bisphenols in soft drinks by on-line solid phase extraction fast liquid chromatography-tandem mass spectrometry, Anal. Chim. Acta, 2011, vol. 683, p. 227.
  8. Ballesteros-Gomez, A., Rubio, S., and Pérez-Bendito, D., Analytical methods for the determination of bisphenol A in food, J. Chromatogr. A, 2009, vol. 1216, p. 449.
  9. Ragavan, K.V., Rastogi, K.N., and Thakur, M.S., Sensors and biosensors for analysis of bisphenol-A, Trends Anal. Chem., 2013, vol. 52, p. 248.
  10. Zhu, S.W., Yue, X., Duan, J., Zhang, Y., Zhang, W., Yu, S., Wang, Y., Zhang, D., and Wang, J., Electrochemically co-reduced 3D GO-C60 nanoassembly as an efficient nanocatalyst for electrochemical detection of bisphenol, Electrochim. Acta, 2016, vol. 188, p. 85.
  11. Zheng, Z., Liu, J., Wang, M., Cao, J., Li, L., Wang, C., and Fenga, N., Selective sensing of bisphenol A and bisphenol S on platinum/poly(diallyl dimethyl ammonium chloride)-diamond powder hybrid modified glassy carbon electrode, J. Electrochem. Soc., 2016, vol. 163, p. B192.
  12. Frankland, S.J.V., Caglar, A., Brenner, D.W., and Griebel, M., Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces, J. Phys. Chem. B, 2002 106, p. 3046.
  13. Yáñez-Sedeño, P., Pingarrón, J.M., Riu, J., and Rius, F.X., Electrochemical sensing based on carbon nanotubes, Trends Anal. Chem., 2010, vol. 29, p. 939.
  14. Gooding, J.J., Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing, Electrochim. Acta, 2005, vol. 49, p. 3049.
  15. Li, H., Chen, D.-X., Sun, Y.-L., Zheng, Y.B., Tan, L.-L., Weiss, P.S., and Yang, Y.-W., Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles, J. Am. Chem. Soc., 2013, vol. 135, p. 1570.
  16. Martin Del Valle, E.M., Cyclodextrins and their uses: a review, Process Biochem., 2004, vol. 39, p. 1033.
  17. Rahemi, V., Garrido, J.M.P.J., Borges, F., Brett, C.M.A., and Garrido, E.M.P.J., Electrochemical determination of the herbicide bentazone using a carbon nanotube β-cyclodextrin modified electrode, Electroanalysis, 2013, vol. 25, p. 2360.
  18. Rahemi, V., Vandamme, J.J., Garrido, J.M.P.J., Borges, F., Brett, C.M.A., and Garrido, E.M.P.J., Enhanced hosteguest electrochemical recognition of herbicide MCPA using a β-cyclodextrin carbon nanotube sensor, Talanta, 2012, vol. 99, p. 288.
  19. Shen, Q. and Wang, X., Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode, J. Electroanal. Chem., 2009, vol. 632, p. 149.
  20. Srinivasan, K. and Stalin, T., Sorption onto insoluble β-cyclodextrin polymer for 2,4-dinitrophenol, J. Incl. Phenom. Macrocycl. Chem., 2012, vol. 73, p. 321.
  21. Wang, H.Y., Han, J., Feng, X.G., and Pang, Y.L., Study of inclusion complex formation between tropaeolin OO and β-cyclodextrin by spectrophotometry and infrared spectroscopy, Spectrochim. Acta Part A, 2006, vol. 65, p. 100.
  22. Boutelliez, C.B., Fontanay, S., Finance, C., and Kedzierewicz, F., Preparation and physicochemical characterization of amoxicillin β-cyclodextrin complexes, AAPS Pharm. Sci. Tech., 2010, vol. 11, p. 574.
  23. Chen, M., Diao, G., and Zhang, E., Study of inclusion complex of β-cyclodextrin and nitrobenzene, Chemosphere, 2006, vol. 63, p. 522.
  24. Sohajda, T., Beni, S., Varga, E., Ivanyi, R., Racz, A., Szente, L., and Noszal, B., Characterization of aspar-tame-cyclodextrin complexation, J. Pharm. Biomed., 2009, vol. 50, p. 737.
  25. Crini, G., Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci., 2005, vol. 30, p. 38.
  26. Lee, J.-Y. and Park, S.-M., Electrochemistry of guest molecules in thiolated cyclodextrin self-assembled monolayers: an implication for size-selective sensors, J. Phys. Chem. B, 1998, vol. 102, p. 9940.
  27. Coutouli-Argyropoulou, E., Kelaidopoulou, A., Sideris, C., and Kokkinidis, G., Electrochemical studies of ferrocene derivatives and their complexation by β-cyclodextrin, J. Electroanal. Chem., 1999, vol. 477, p. 130.
  28. Wang, G., Liu, X., Yu, B., and Luo, G., Electrocatalytic response of norepinephrine at a β-cyclodextrin incorporated carbon-nanotube modified electrode, J. Electroanal. Chem., 2004, vol. 567, p. 227.
  29. Garrido, J.M.P.J., Rahemi, V., Borges, F., Brett, C.M.A., and Garrido, E.M.P.J., Carbon nanotube β-cyclodex-trin modified electrode as enhanced sensing platform for the determination of fungicide pyrimethanil, Food Control, 2016, vol. 60, p. 7.
  30. He, J.-L., Yang, Y., Yang, X., Liu, Y.-L., Liu, Z.-H., Shen, G.-L., and Yu, R.-Q., β-cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin, Sens. Actuators B, 2006, vol. 114, p. 94.
  31. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: John Wiley and Sons, 1980.
  32. Nicholson, R.S. and Shain, I., Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 1964, vol. 36, p. 706.
  33. Laviron, E., Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry, J. Electroanal. Chem. Interfacial Electrochem., 1974, vol. 52, p. 355.