Статья
2020

The Use of Phosphorus in Sodium-Ion Batteries (A Review)


T. L. Kulova T. L. Kulova , A. M. Skundin A. M. Skundin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520010061
Abstract / Full Text

In the recent years, attention is focused on phosphorus as the active material for negative electrodes of sodium-ion rechargeable batteries because it demonstrates the maximum theoretical capacity with respect to sodium intercalation. The studies published since 2013 on sodium intercalation into red phorphorus, black phosphorus, and phosphorenes and also in phosphides of certain elements are considered.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    T. L. Kulova & A. M. Skundin

References
  1. Ellis, B.L. and Nazar, L.F., Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci., 2012, vol. 16, p. 168.
  2. Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-Gonzalez, J., and Rojo, T., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci., 2012, vol. 5, p. 5884.
  3. Slater, M.D., Kim, D., Lee, E., and Johnson, Ch.S., Sodium-ion batteries, Adv. Funct. Mat., 2013,vol. 23, p. 947.
  4. Pan, H., Hu, Y.-S., and Chen, L., Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci., 2013,vol. 6, p. 2338.
  5. Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S., Research development on sodium-ion batteries, Chem. Rev., 2014, vol. 114, p. 11636.
  6. Kubota, K. and Komaba, S., Review–Practical issues and future perspective for Na-ion batteries, J. Electrochem. Soc., 2015, vol. 162, p. A2538.
  7. Kundu, D., Talaie, E., Duffort, V., and Nazar, L.F., The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem., Int. Ed., 2015, vol. 54, p. 3431.
  8. Kulova, T.L. and Skundin, A.M., From lithium-ion to sodium-ion battery, Russ. Chem. Bull., 2017, vol. 66, no. 8, p. 1329.
  9. Skundin, A.M., Kulova, T.L., and Yaroslavtsev, A.B., Sodium-ion batteries (A review), Russ. J. Electrochem., 2018, vol. 54, p. 113.
  10. Delmas, C., Sodium and sodium-ion batteries: 50 years of research, Adv. Energy Mater., 2018, vol. 8, no. 17, Article no. 1703137.
  11. Deng, J., Luo, W.-B., Chou, S.-L., Liu, H.-K., and Dou, S.-X., Sodium-ion batteries: From academic research to practical commercialization, Adv. Energy Mater., 2018, vol. 8, no. 4, Article no. 1701428.
  12. Kim, S.-W., Seo, D.-H., Ma, X., Ceder, G., and Kang, K., Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries, Adv. Energy Mater., 2012, vol. 2, p. 710.
  13. Ong, S.P., Chevrier, V.L., Hautier, G., Jain, A., Moore, C., Kim, S., Ma, X., and Ceder, G., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials, Energy Environ. Sci., 2011, vol. 4, p. 3680.
  14. Hong, S.Y., Kim, Y., Park, Y., Choi, A., Choi, N.-S., and Lee, K.T., Charge carriers in rechargeable batteries: Na ions vs. Li ions, Energy Environ. Sci., 2013, vol. 6, p. 2067.
  15. Li, L., Zheng, Y., Zhang, S., Yang, J., Shao, Z., and Guo, Z., Recent progress on sodium ion batteries: potential high-performance anodes, Energy Environ. Sci., 2018, vol. 11, p. 2310.
  16. Xu, J., Lee, D.H., and Meng, Y.S., Recent advances in sodium intercalation positive electrode materials for sodium ion batteries, Funct. Mater. Lett., 2013, vol. 6, Article no. 1330001.
  17. Xiang, X., Zhang, K., and Chen, J., Recent advances and prospects of cathode materials for sodium-ion batteries, Adv. Mater., 2015, vol. 27, p. 5343.
  18. Kubota, K., Yabuuchi, N., Yoshida, H., Dahbi, M., and Komaba, S., Layered oxides as positive electrode materials for Na-ion batteries, MRS Bull., 2014, vol. 39, p. 416.
  19. Han, M.H., Gonzalo, E., Singh, G., and Rojo, T., A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries, Energy Environ. Sci., 2015, vol. 8, p. 81.
  20. Clément, R.J., Bruce, P.G., and Grey, C.P., Review—Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials, J. Electrochem. Soc., 2015, vol. 162, p. A2589.
  21. Masquelier, C. and Croguennec, L., Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries, Chem. Rev., 2013, vol. 113, p. 6552.
  22. Yabuuchi, N. and Komaba, S., Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries, Sci. Technol. Adv. Mater., 2014, vol. 15, Article no. 043501.
  23. Toumar, A.J., Ong, S.P., Richards, W.D., Dacek, S., and Ceder, G., Vacancy ordering in O3-type layered metal oxide sodium-ion battery cathodes, Phys. Rev. Appl., 2015, vol. 4, Article no. 064002.
  24. Kim, Y., Park, Y., Choi, A., Choi, N.-S., Kim, J., Lee, J., Ryu, J.H., Oh, S.M., and Lee, K.T., An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries, Adv. Mater., 2013,vol. 25,p. 3045.
  25. Fu, Y., Wei, Q., Zhang, G., and Sun, S., Advanced phosphorus-based materials for lithium/sodium-ion batteries: Recent developments and future perspectives, Adv. Energy Mater., 2018, vol. 8, no. 13, Article no. 1702849.
  26. Zhao, D., Zhang, L., Fu, C., Zhang, J., and Niu, C., The lithium and sodium storage performances of phosphorus and its hierarchical structure, Nano Res., 2019, vol. 12, no. 1, p. 1.
  27. Liu, W., Zhi, H., and Yu, X., Recent progress in phosphorus based anode materials for lithium/sodium-ion batteries, Energy Storage Mater., 2019, vol. 16,p. 290.
  28. Mei, P., Kim, J., Kumar, N.A., Pramanik, M., Kobayashi, N., Sugahara, Y., and Yamauchi, Y., Phosphorus-based mesoporous materials for energy storage and conversion, Joule, 2018, vol. 2, p. 2289.
  29. Han, X., Han, J., Liu, C., and Sun, J., Promise and challenge of phosphorus in science, technology, and application, Adv. Funct. Mater., 2018, vol. 28, Article no. 1803471.
  30. Li, Z. and Zhao, H., Recent developments of phosphorus-based anodes for sodium ion batteries, J. Mater. Chem. A, 2018, vol. 6, p. 24013.
  31. Zhou, J., Liu, X., Cai, W., Zhu, Y., Liang, J., Zhang, K., Lan, Y., Jiang, Z., Wang, G., and Qian, Y., Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries, Adv. Mater., 2017, vol. 29, no. 29, Article no. 1700214.
  32. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek D., and Ye, P.D., Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano, 2014, vol. 8, p. 4033.
  33. Bagheri, S., Mansouri, N., and Aghaie, E., Phosphorene: A new competitor for graphene (Review), Int. J. Hydrogen Energy, 2016, vol. 41, p. 4085.
  34. Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., and Castro Neto H., Phosphorene: From theory to applications (Review), Nat. Rev. Mater., 2016, vol. 1, no. 11, Article no. 16061.
  35. Liu, H., Du, Y., Deng, Y., and Ye, P.D., Semiconducting black phosphorus: Synthesis, transport properties and electronic applications (Review), Chem. Soc. Rev., 2015, vol. 44, p. 2732.
  36. Guo, Z., Ding, W., Liu, X., Sun, Z., and Wei, L., Two-dimensional black phosphorus: A new star in energy applications and the barrier to stability, Appl. Mater. Today, 2019, vol. 14, p. 51.
  37. Qiu, M., Sun, Z.T., Sang, D.K., Han, X.G., Zhang, H., and Niu, C.M., Current progress in black phosphorus materials and their applications in electrochemical energy storage, Nanoscale, 2017, vol. 9, p. 13384.
  38. Liu, H., Hu, K., Yan, D., Chen, R., Zou, Y., Liu, H., and Wang, S., Recent advances on black phosphorus for energy storage, catalysis, and sensor applications, Adv. Mater., 2018, vol. 30, no. 32, Article no.1800295.
  39. Keyes, R.W., The electrical properties of black phosphorus, Phys. Rev., 1953, vol. 92, p. 580.
  40. Bridgman, P.W., Two new modifications of phosphorus, J. Am. Chem. Soc., 1914, vol. 36, p. 1344.
  41. Endo, S., Akahama, Y., Terada, S.-I., and Narita, S.-I., Growth of large single crystals of black phosphorus under high pressure, Jap. J. Appl. Phys., 1982, vol. 21, part 2, no. 8, p. L482.
  42. Lange, S., Schmidt, P., and Nilges, T., Au3SnP7@black phosphorus: An easy access to black phosphorus, Inorg. Chem., 2007, vol. 46, p. 4028.
  43. Köpf, M., Eckstein, N., Pfister, D., Grotz, C., Krüger, I., Greiwe, M., Hansen, T., Kohlmann, H., and Nilges, T., Access and in situ growth of phosphorene-precursor black phosphorus, J. Cryst. Growth, 2014, vol. 405, p. 6.
  44. Park, C.M. and Sohn, H.J., Black phosphorus and its composite for lithium rechargeable batteries, Adv. Mater., 2007, vol. 19, p. 2465.
  45. Sangster, J.M., Na–P (sodium–phosphorus) system, J. Phase Equilib. Diffus., 2010, vol. 31, p. 62.
  46. Mayo, M., Griffith, K.J., Pickard, C.J., and Morris, A.J., Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries, Chem. Mater., 2016, vol. 28, p. 2011.
  47. Mortazavi, M., Ye, Q., Birbilis, N., and Medhekar, N.V., High capacity group-15 alloy anodes for Na-ion batteries: Electrochemical and mechanical insights, J. Power Sources, 2015, vol. 285, p. 29.
  48. Qian, J., Wu, X., Cao, Y., Ai, X., and Yang, H., High capacity and rate capability of amorphous phosphorus for sodium ion batteries., Angew. Chem. Int. Ed., 2013, vol. 52, p. 4633.
  49. Qian, J., Qiao, D., Ai, X., Cao, Y., and Yang, H., Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries, Chem. Commun., 2012, vol. 48, p. 8931.
  50. Kim, Y., Hwang, S.M., Yu, H., and Kim, Y., High energy density rechargeable metal-free seawater batteries: a phosphorus/carbon composite as a promising anode material, J. Mater. Chem. A, 2018, vol. 6, p. 3046.
  51. Li, W.-J., Chou, S.-L., Wang, J.-Z., Liu, H.-K., and Dou, S.-X., Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage, Nano Lett., 2013, vol. 13, p. 5480.
  52. Song, J., Yu, Z., Gordin, M.L., Hu, S., Yi, R., Tang, D., Walter, T., Regula, M., Choi, D., Li, X., Manivannan, A., and Wang, D., Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries, Nano Lett., 2014, vol. 14, p. 6329.
  53. Zhou, X., Yin, Y.-X., Wan, L.-J., and Guo, Y.-G., Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries, Chem. Commun., 2012, vol. 48, p. 2198.
  54. Xin, X., Zhou, X., Wang, F., Yao, X., Xu, X., Zhu, Y., and Liu, Z., A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries, J. Mater. Chem., 2012, vol. 22, p. 7724.
  55. Feng, N., Liang, X., Pu, X., Li, M., Liu, M., Cong, Z., Sun, J., Song, W., and Hu, W., Rational design of red phosphorus/reduced graphene oxide composites for stable sodium ion storage, J. Alloys Compd., 2019, vol. 775, p. 1270.
  56. Li, W.-J., Chou, S.-L., Wang, J.-Z., Liu, H.-K., and Dou, S.-X., Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P–C), J. Mater. Chem. A, 2016, vol. 4, p. 505.
  57. Lee, G.H., Jo, M.R., Zhang, K., and Kang, Y.M., A reduced graphene oxide-encapsulated phosphorus/carbon composite as a promising anode material for high-performance sodium-ion batteries, J. Mater. Chem. A,2017,vol. 5,p. 3683.
  58. Ding, X.L., Huang, Y.Y., Li, G.L., Tang, Y., Li, X.C., and Huang, Y.H., Phosphorus nanoparticles combined with cubic boron nitride and graphene as stable sodium ion battery anodes, Electrochim. Acta, 2017, vol. 235, p. 150.
  59. Zhao,Q., Meng,Y., Yang, L., He,X., He,B., Liu,Y., and Xiao, D., Facile synthesis of phosphorus-doped carbon under tuned temperature with high lithium and sodium anodic performances, J. Colloid Interface Sci., 2019, vol. 551, p. 61.
  60. Song, J., Yu, Z., Gordin, M.L., Li, X., Peng, H. and Wang, D., Advanced sodium-ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube and cross linked polymer binder, ACS Nano, 2015, vol. 9, p. 11933.
  61. Liu, W., Yuan, X., and Yu, X., Core–shell structure of polydopamine-coated phosphorus-carbon nanotube composite for high-performance sodium-ion batteries, Nanoscale, 2018, vol. 10, p. 16675.
  62. Walter, M., Erni, R.,and Kovalenko, M.V., Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries, Sci. Rep., 2015, vol. 5, p. 8418.
  63. Darwiche, A., Marino, C., Sougrati, M.T., Fraisse, B., Stievano, L., and Monconduit, L., Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism, J. Amer. Chem. Soc., 2012, vol. 134, p. 20805.
  64. Liang, L., Xu, Y., Wang, C., Wen, L., Fang, Y., Mi, Y., Zhou, M., Zhao, H., and Lei, Y., Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries, Energy Environ. Sci., 2015, vol. 8, p. 2954.
  65. Saubanère, M., Yahia, M.B., Lemoigno, F., and Doublet, M.-L., Influence of polymorphism on the electrochemical behavior of MxSb negative electrodes in Li/Na batteries, J. Power Sources, 2015, vol. 280, p. 695.
  66. He, M., Kravchyk, K., Walter, M., and Kovalenko, M.V., Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk, Nano Lett., 2014, vol. 14, p. 1255.
  67. Chin, L.-C., Yi, Y.-H., Chang, W.-C., and Tuan, H.-Y., Significantly improved performance of red phosphorus sodium-ion anodes with the addition of iron, Electrochim. Acta, 2018, vol. 266, p. 178.
  68. Marino, C., Debenedetti, A., Fraisse, B., Favier, F., and Monconduit, L., Activated phosphorus as new electrode material for Li-ion batteries, Electrochem. Comm., 2011, vol. 13, p. 346.
  69. Wang, L., He, X., Li, J., Sun, W., Gao, J., Guo, J., and Jiang, C., Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries, Angew. Chem. Int. Ed., 2012, vol. 51, p. 9034.
  70. Zhu, Y., Wen, Y., Fan, X., Gao, T., Han, F., Luo, C., Liou, S.-C., and Wang, C., Red phosphorus–single-walled carbon nanotube composite as a superior anode for sodium ion batteries, ACS Nano, 2015, vol. 9, p. 3254.
  71. Ruan, B., Wang, J., Shi, D., Xu, Y., Chou, S., Liu, H., and Wang, J., A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 19011.
  72. Xu, J., Ding, J., Zhu, W., Zhou, X., Ge, S., and Yuan, N., Nano-structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries, Sci. China Mater., 2018, vol. 61, p. 371.
  73. Li, W., Yang, Z., Li, M., Jiang, Y., Wei, X., Zhong, X., Gu, L., and Yu, Y., Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity, Nano Lett., 2016, vol. 16, p. 1546.
  74. Ryoo, R.,Joo, S.H., Kruk, M., and Jaroniec, M., Ordered mesoporous carbons, Adv. Mater., 2001, vol. 13, p. 677.
  75. Lee, J., Kim, J., and Hyeon, T., Recent progress in the synthesis of porous carbon materials, Adv. Mater., 2006, vol. 18, p. 2073.
  76. Yu, Z., Song, J., Wang, D., and Wang, D., Advanced anode for sodium-ion battery with promising long cycling stability achieved by tuning phosphorus-carbon nanostructures, Nano Energy, 2017, vol. 40, p. 550.
  77. Yao, S., Cui, J., Huang, J., Huang, J.-Q., Chong, W.G., Qin, L., Mai, Y.-W., and Kim, J.-K., Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries, Adv. Energy Mater., 2018, vol. 8, Article no. 1702267.
  78. Zhang, C., Wang, X., Liang, Q., Liu, X., Weng, Q., Liu, J., Yang, Y., Dai, Z., Ding, K., Bando, Y., Tang, J., and Golberg, D., Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries, Nano Lett., 2016, vol. 16, p. 2054.
  79. Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., and Coleman, J.N., Liquid exfoliation of layered materials, Science, 2013, vol. 340, p. 1420.
  80. Huang, Y., Sutter, E., Shi, N.N., Zheng, J., Yang, T., Englund, D., Gao, H.-J., and Sutter, P., Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials, ACS Nano, 2015, vol. 9, p. 10612.
  81. Pei, L., Zhao, Q., Chen, C., Liang, J., and Chen, J., Phosphorus nanoparticles encapsulated in graphene scrolls as a high-performance anode for sodium-ion batteries, ChemElectroChem, 2015, vol. 2, p. 1652.
  82. Gao, H., Zhou, T., Zheng, Y., Liu, Y., Chen, J., Liu, H., and Guo, Z., Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries, Adv. Energy Mater., 2016, vol. 6, Article no. 1601037.
  83. Liu, Y., Zhang, A., Shen, C., Liu, Q., Cao, X., Ma, Y., Chen, L.,Lau, C., Chen, T.C., Wei, F., and Zhou, C., Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries, ACS Nano, 2017, vol. 11, p. 5530.
  84. Li, J., Wang, L., Wang, Z., Tian, G., and He, X., Economic and high performance phosphorus–carbon composite for lithium and sodium storage, ACS Omega, 2017, vol. 2, p. 4440.
  85. Wu, N., Yao, H.-R., Yin, Y.-X., and Guo, Y.-G., Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores, J. Mater. Chem. A, 2015, vol. 3, p. 24221.
  86. Wu, Y., Liu, Z., Zhong, X., Cheng, X., Fan, Z., and Yu, Y., Amorphous red phosphorus embedded in sandwiched porous carbon enabling superior sodium storage performances, Small, 2018, vol. 14, Article no. 1703472.
  87. Ma, X., Chen, L., Ren, X., Hou, G., Chen, L., Zhang, L., Liu, B., Ai, Q., Zhang, L., Si, P., Lou, J., Feng, J., and Ci, L., High performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries, J. Mater. Chem., A, 2018, vol. 6, p. 1574.
  88. Li, W., Hu, S., Luo, X., Li, Z., Sun, X., Li, M., Liu, F., and Yu, Y., Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery, Adv. Mater., vol. 29, Article no. 1605820.
  89. Sun, J., Lee, H.-W., Pasta, M., Sun, Y., Liu, W., Li, Y., Lee, H.R., Liu, N., and Cui, Y., Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries, Energy Storage Mater., 2016, vol. 4, p. 130.
  90. Zeng, G., Hu, X., Zhou, B., Chen, J., Cao, C., and Wen, Z., Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries, Nanoscale, 2017, vol. 9, no. 38, p. 14722.
  91. Liu, Y., Zhang, N., Liu, X., Chen, C., Fan, L.-Z., and Jiao, L., Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries, Energy Storage Mater., 2017, vol. 9, p. 170.
  92. Zhang, Y., Zheng, Y., Rui, K., Hng, H.H., Hippalgaonkar, K., Xu, J., Sun, W., Zhu, J., Yan, Q., and Huang, W., 2D black phosphorus for energy storage and thermoelectric applications, Small, 2017, vol. 13, no. 28, Article no. 1700661.
  93. Qiao, J., Kong, X., Hu, Z.-X., Yang, F., and Ji, W., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Comm., 2014, vol. 5, Article no. 4475.
  94. Xia, F., Wang, H., and Jia, Y., Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Comm., 2014, vol. 5, Article no. 4458.
  95. Nie, A., Cheng, Y., Ning, S., Foroozan, T., Yasaei, P., Li, W., Song, B., Yuan, Y., Chen, L., Salehi-Khojin, A., Mashayek, F., and Shahbazian-Yassar, R., Selective ionic transport pathways in phosphorene, Nano Lett., 2016, vol. 16, p. 2240.
  96. Chen, T., Zhao, P., Guo, X., and Zhang, S., Two-fold anisotropy governs morphological evolution and stress generation in sodiated black phosphorus for sodium ion batteries, Nano Lett., 2017, vol. 17, no. 4, p. 2299.
  97. Hembram, K.P.S.S., Jung, H., Yeo, B.C., Pai, S.J., Kim, S., Lee, K.-R., and Han, S.S., Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations, J. Phys. Chem. C, 2015, vol. 119, p. 15041.
  98. Cheng, Y., Zhu, Y., Han, Y., Liu, Z., Y ang, B., Nie, A., Huang, W., Shahbazian-Yassar, R., and Mashayek, F., Sodium-induced reordering of atomic stacks in black phosphorus, Chem. Mater., 2017, vol. 29, p. 1350.
  99. Yu, X.-F., Giorgi, G., Ushiyama, H., and Yamashita, K., First-principles study of fast Na diffusion in Na3P, Chem. Phys. Lett., 2014, vol. 612, p. 129.
  100. Dahbi, M., Yabuuchi, N., Fukunishi, M., Kubota, K., Chihara, K., Tokiwa, K., Yu, X.-F., Ushiyama, H., Yamashita, K., Son, J.-Y., Cui, Y.-T., Oji, H., and Komaba, S., Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface, Chem. Mater., 2016, vol. 28, no. 6, p. 1625.
  101. Ramireddy, T., Xing, T., Rahman, M.M., Chen, Y., Dutercq, Q., Gunzelmann, D., and Glushenkov, A.M., Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 5572.
  102. Xu, G.L., Chen, Z.H., Zhong, G.M., Liu, Y.Z., Yang, Y., Ma, T.Y., Ren, Y., Zuo, X.B., Wu, X.H., Zhang, X.Y., and Amine, K., Nanostructured black phosphorus/Ketjen black–multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries, Nano Lett, 2016, vol. 16, p. 3955.
  103. Liu, H., Tao, L., Zhang, Y., Xie, C., Zhou, P., Chen, R., and Wang, S., Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 42, p. 36849.
  104. Xu, Y., Wang, Z., Guo, Z., Huang, H., Xiao, Q., Zhang, H., and Yu, X.F., Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots, Adv. Opt. Mater., 2016, vol. 4,p. 1223.
  105. Zhang, Y., Sun, W., Luo, Z.-Z., Zheng, Y., Yu, Z., Zhang, D., Yang, J., Tan, H.T., Zhu, J., Wang, X., Yan, Q., and Dou, S.X., Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries, Nano Energy, 2017, vol. 40, p. 576.
  106. Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., and Van Der Zant, H.S.J., Isolation and characterization of few-layer black phosphorus, 2D Mater., 2014, vol. 1, no. 2, Article no. A6(025001).
  107. Hanlon, D., Backes, C., Doherty, E., Cucinotta, C.S., Berner, N.C., Boland, C., Lee, K., Harvey, A., Lynch, P., Gholamvand, Z., Zhang, S., Wang, K., Moynihan, G., Pokle, A., Ramasse, Q.M., et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics, Nat. Commun., 2015, vol. 6, Article no. 8563.
  108. Hu, Z., Niu, T., Guo, R., Zhang, J.,Lai, M., He, J., Wang,L. and Chen, W., Two-dimensional black phosphorus: its fabrication, functionalization and applications, Nanoscale, 2018, vol. 10, p. 21575.
  109. Brent, J.R., Savjani, N., Lewis, E.A., Haigh, S.J., Lewis, D.J., and O’Brien, P., Production of few-layer phosphorene by liquid exfoliation of black phosphorus, Chem. Comm., 2014, vol. 50, p. 13338.
  110. Late, D.J., Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor, Microporous Mesoporous Mater., 2016, vol. 225, p. 494.
  111. Pang, J., Bachmatiuk, A., Yin, Y., Trzebicka, B., Zhao, L., Fu, L., Mendes, R.G., Gemming, T., Liu, Z., and Rummeli, M.H., Applications of phosphorene and black phosphorus in energy conversion and storage devices, Adv. Energy Mater., 2018, vol. 8, no. 8, Article no. 17020 93.
  112. Kulish, V.V., Malyi, O.I., Persson, C., and Wu, P., Phosphorene as an anode material for Na-ion batteries: a first-principles study, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 13921.
  113. Liu, X., Wen, Y., Chen, Z., Shan, B., and Chen, R., A first-principles study of sodium adsorption and diffusion on phosphorene, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 16398.
  114. Sun, X. and Wang, Z., Sodium adsorption and diffusion on monolayer black phosphorus with intrinsic defects, Appl. Surf. Sci., 2018, vol. 427, p. 189.
  115. Sun, J., Lee, H.W., Pasta, M., Yuan, H., Zheng, G., Sun, Y., Li, Y., and Cui, Y., A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries, Nat. Nanotechnol., 2015, vol. 10, p. 980.
  116. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol., 2008, vol. 3, p. 563.
  117. Chowdhury, C., Karmakar, S., and Datta, A., Capping black phosphorene by hBN enhances performances in anodes for Li and Na ion batteries, ACS Energy Lett., 2016, vol. 1, p. 253.
  118. Kim, Y., Kim, Y., Choi, A., Woo, S., Mok, D., Choi, N.-S., Jung, Y.S., Ryu, J.H., Oh, S.M., and Lee, K.T., Tin phosphide as a promising anode material for Na-ion batteries, Adv. Mater., 2014, vol. 26, p. 4139.
  119. Olofsson, O., On the crystal structure of Sn4P3, Acta Chem. Scand.,1967,vol. 21,p. 1659.
  120. Qian, J.F., Xiong, Y., Cao, Y.L., Ai, X.P., and Yang, H.X., Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries, Nano Lett., 2014, vol. 14, p. 1865.
  121. Li, W.J., Chou, S.-L., Wang, J.-Z., Kim, J.H., Liu, H.-K., and Dou, S.-X., Sn4 + xP3@amorphous Sn–P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability, Adv. Mater., 2014, vol. 26, p. 4037.
  122. Liu, S., Zhang, H., Xu, L., Ma, L., and Chen, X., Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries, J. Power Sources, 2016, vol. 304, p. 346.
  123. Liu, J., Kopold, P., Wu, C., Aken, P.A., Maier, J., and Yu, Y., Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries, Energy Environ. Sci., 2015, vol. 8, p. 3531.
  124. Lou, X.W., Wang, Y., Yuan, C., Lee, J.Y., and Archer, L.A., Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater., 2006, vol. 18, p. 2325.
  125. Liu, J., Wen, Y.R., Wang, Y., van Aken, P.A., Maier, J., and Yu, Y., Carbon-encapsulated pyrite as stable and Earth-abundant high energy cathode material for rechargeable lithium batteries, Adv. Mater., 2014, vol. 26, p. 6025.
  126. Kovnir, K.A., Kolen’ko, Y.V., Ray, S., Li, J., Watanabe, T., Itoh, M., Yoshimura, M., and Shevelkov, A.V., A facile high-yield solvothermal route to tin phosphide Sn4P3, J. Solid State Chem., 2006, vol. 179, p. 3756.
  127. Li, Q., Li, Z.Q., Zhang, Z.W., Li, C.X., Ma, J.Y., Wang, C.X., Ge, X.L., Dong, S.H., and Yin, L.W., Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries, Adv. Energy Mater., 2016, vol. 6, Article no. 1600376.
  128. Wang, G., Wang, B., Wang, X., Park, J., Dou, S., Ahn, H., and Kim, K., Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries, J. Mater. Chem., 2009, vol. 19, p. 8378.
  129. Pan, E., Jin, Y., Zhao, C., Jia, M., Chang, Q., Zhang, R., and Jia, M., Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries, Appl. Surf. Sci., 2019, vol. 475, p. 12.
  130. Fan, X.L., Mao, J.F., Zhu, Y.J., Luo, C., Suo, L.M., Gao, T., Han, F.D., Liou, S.-C., and Wang, C.S., Superior stable self-healing SnP3 anode for sodium-ion batteries, Adv. Energy Mater., 2015, vol. 5, no. 18, Article no. 1500174.
  131. Suryanarayana, C., Mechanical alloying and milling, Progr. Mater. Sci., 2001,vol. 46, no. 1–2, p. 1.
  132. Fan, X., Shao, J., Xiao, X., Wang, X., Li, S., Ge, H., and Chen, L., SnLi4.4 nanoparticles encapsulated in carbon matrix as high performance anode material for lithium-ion batteries, Nano Energy, 2014, vol. 9, p. 196.
  133. Fullenwarth, J., Darwiche, A., Soares, A., Donnadieu, B., and Monconduit, L., NiP3: a promising negative electrode for Li- and Na-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 2050.
  134. Wu, C., Kopold, P., Aken, P.A.V., Maier, J., and Yu, Y., High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design, Adv. Mater., 2017, vol. 29, Article no. 1604015.
  135. Zheng, J., Huang, X., Pan, X., Teng, C., and Wang, N., Yolk-shelled Ni2P@carbon nanocomposite as high-performance anode material for lithium and sodium ion batteries, Appl. Surf. Sci., 2019, vol. 473, p. 699.
  136. Zhou, D., Xue, L.-P., and Wang, N., Robustly immobilized Ni2P nanoparticles in porous carbon networks promotes high-performance sodium-ion storage, J. Alloys Compd., 2019, vol. 776, p. 912.
  137. Li, H., Wang, X., Zhao, Z., Tian, Z., Zhang, D., and Wu, Y., Ni2P nanoflake array/three dimensional graphene architecture as integrated free-standing anode for boosting the sodiation capability and stability, ChemElectroChem, 2019, vol. 6, p. 404.
  138. Wang, J., Wang, B., Liu, X., Wang, G., Wang, H., and Bai, J., Construction of carbon-coated nickel phosphide nanoparticle assembled submicrospheres with enhanced electrochemical properties for lithium/sodium-ion batteries, J. Colloid Interface Sci., 2019, vol. 538, p. 187.
  139. Zhao, F.P., Han, N., Huang, W.J., Li, J.J., Ye, H.L., Chen, F.J., and Li, Y.G., Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 21754.
  140. Kim, S.-O. and Manthiram, A., The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2/C hybrid anode, Chem. Commun., 2016, vol. 52, p. 4337.
  141. Fan, M.P., Chen, Y., Xie, Y.H., Yang, T.Z., Shen, X.W., Xu, N., Yu, H.Y., and Yan, C.L., Half cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes, Adv. Funct. Mater., 2016, vol. 26, p. 5019.
  142. Yang, Q.-R., Li, W.-J., Chou, S.-L., Wang, J.-Z., and Liu, H.-K., Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery, RSC Adv., 2015, vol. 5, p. 80536.
  143. Li, W.-J., Chou, S.-L., Wang, J.-Z., Liu, H.-K., and Dou, S.-X., A new, cheap, and productive FeP anode material for sodium-ion batteries, Chem. Commun., 2015, vol. 51, p. 3682.
  144. Han, F., Tan, C.Y.J., and Gao, Z., Improving the specific capacity and cyclability of sodium-ion batteries by engineering a dual-carbon phase-modified amorphous and mesoporous iron phosphide, ChemElectroChem, 2016, vol. 3, p. 1054.
  145. Li, W.-J., Yang, Q.-R., Chou, S.-L., Wang, J.-Z., and Liu, H.-K., Cobalt phosphide as a new anode material for sodium storage, J. Power Sources, 2015, vol. 294, p. 627.
  146. Li, Z., Zhang, L., Ge, X., Li, C., Dong, S., Wang, C., and Yin, L., Core–shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries, Nano Energy, 2017, vol. 32, p. 494.
  147. Zhang, L., Wu, H.B., Madhavi, S., Hng, H.H., and Lou, X.W., Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties, J. Am. Chem. Soc., 2012, vol. 134, p. 17388.
  148. Ge, X., Li, Z., and Yin, L., Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery, Nano Energy, 2017, vol. 32, p. 117.
  149. Li, W., Ke, L., Wei, Y., Guo, S., Gan, L., Li, H., Zhai, T., and Zhou, H., Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage, J. Mater. Chem. A, 2017, vol. 5, p. 4413.
  150. Gavrilin, I.M., Smolyaninov, V.A., Dronov, A.A., Gavrilov, S.A., Trifonov, A.Yu., Kulova, T.L., Kuz’mina, A.A., and Skundin, A.M., Electrochemical insertion of sodium into nanostructured materials based on germanium, Mendeleev Commun., 2018, vol. 28, p. 659.
  151. Nam, K.-H., Jeon, K.-J., and Park, C.-M., Layered germanium phosphide-based anodes for high-performance lithium- and sodium-ion batteries, Energy Storage Mater., 2019, vol. 17, p. 78.
  152. Lu, Y., Zhou, P., Lei, K., Zhao, Q., Tao, Z., and Chen, J., Selenium phosphide (Se4P4) as a new and promising anode material for sodium-ion batteries, Adv. Energy Mater., 2017, vol. 7, Article no. 1601973.
  153. Cao, Y., Majeed, M.K., Li, Y., Ma, G., Feng, Z., Ma, X., and Ma, W., P4Se3 as a new anode material for sodium-ion batteries, J. Alloys Compd., 2019, vol. 775, p. 1286.
  154. Pan, Q., Chen, H., Wu, Z., Wang, Y., Zhong, B., Xia, L., Wang, H.-Y., Cui, G., Guo, X., and Sun, X., Nanowire of WP as a high-performance anode material for sodium-ion batteries, Chem. Eur. J., 2019, vol. 25, p. 971.
  155. Duveau, D., Sananes, I.S., Fullenwarth, J., Cuninc, F., and Monconduit, L., Pioneer study of SiP2 as negative electrode for Li- and Na-ion batteries, J. Mater. Chem. A, 2016, vol. 4, p. 3228.