Theoretical and Experimental Investigation of Limiting Diffusion Current in the Systems with Modified Perfluorinated Membranes Containing Sulfonic Acid Groups

N. A. Kononenko N. A. Kononenko , O. A. Demina O. A. Demina , N. V. Loza N. V. Loza , S. V. Dolgopolov S. V. Dolgopolov , S. V. Timofeev S. V. Timofeev
Российский электрохимический журнал
Abstract / Full Text

The limiting diffusion current density in electromembrane systems is theoretically estimated by using refined Pears equation and different model approaches for the calculating of the counter-ion transport number in the membrane and its diffusion permeability differential coefficient. To this purpose, experimental data on specific conductivity, diffusion and electroosmotic permeability, as well as the apparent transport numbers of counter-ions in perfluorinated sulfocationite MF-4SK membranes with different specific water content over wide range of sodium chloride solution concentrations are used. Special features of different approaches and models used in the evaluating of the membrane parameters necessary for calculating the electrodiffusion characteristics and the limiting diffusion current are analyzed. The possibility of adequate theoretical estimation of the limiting diffusion current for ion-exchange membranes modified by organic and inorganic dopants is shown. This allows predicting the effectiveness of membranes in electromembrane processes basing on relatively simple measurements of the transport characteristics of the modified ion-exchange membranes.

Author information
  • Kuban State University, 350040, Krasnodar, Russia

    N. A. Kononenko, O. A. Demina & N. V. Loza

  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    S. V. Dolgopolov

  • JSC Plastpolimer, 195197, St. Petersburg, Russia

    S. V. Timofeev

  1. Galama, A.H., Saakes, M., Bruning, H., Rijnaarts, H.H.M., and Post, J.W., Seawater predesalination with electrodialysis, Desalination, 2014, vol. 342, p. 61.
  2. Moon, S.-H. and Yun, S.-H., Process integration of electrodialysis for a cleaner environment, Current Opinion Chemical Eng., 2014, vol. 4, p. 25.
  3. Yaroslavtsev, A.B. and Nikonenko, V.V., Ion-exchange membrane materials: Properties, modification, and practical application, Nanotechnologies in Russia, 2009, vol. 4, p. 137.
  4. Zabolotskii, V.I., Protasov, K.V., and Sharafan, M.V., Sodium chloride concentration by electrodialysis with hybrid organic-inorganic ion-exchange membranes: an investigation of the process, Russ. J. Electrochem., 2010, vol. 46, p. 979.
  5. Protasov, K.V., Shkirskaya, S.A., Berezina, N.P., and Zabolotskii, V.I., Composite sulfonated cation-exchange membranes modified with polyaniline and applied to salt solution concentration by electrodialysis, Russ. J. Electrochem., 2010, vol. 46, p. 1131.
  6. Membranes and Membranes Technologies (in Russian), Yaroslavtsev, A.B., Ed., Moscow: Nauchnyi Mir, 2013.
  7. Zabolotskii, V.I. and Nikonenko, V.V., Ion Transport in Membranes (in Russian), Moscow: Nauka, 1996.
  8. Melnikov, S., Loza, S., Sharafan, M., and Zabolotskiy V., Electrodialysis treatment of secondary steam condensate obtained during production of ammonium nitrate. Technical and economic analysis, Sep. Pur. Tech., 2016, vol. 157, p. 179.
  9. Martí-Calatayud, M.C., García-Gabaldón, M., and Pérez-Herranz, V., Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes, J. Membr. Sci., 2013, vol. 443, p. 1.
  10. Zerdoumi, R., Oulmi, K., and Benslimane, S., Electrochemical characterization of the CMX cation exchange membrane in buffered solutions: Effect on concentration polarization and counterions transport properties, Desalination, 2014, vol. 340, p. 42.
  11. Eliseeva, T.V. and Kharina, A.Y., Voltammetric and transport characteristics of anion-exchange membranes during electrodialysis of solutions containing alkylaromatic amino acid and a mineral salt, Russ. J. Electrochem., 2015, vol. 51, p. 63.
  12. Ul Afsar, N., Ge, X., Zhao, Z., Hussain, A., He, Y., Ge, L., and Xu, T., Zwitterion membranes for selective cation separation via electrodialysis, Sep. Pur. Tech., 2021, vol. 254, p. 117619.
  13. Ahmad, M., Yaroshchuk, A., and Bruening, M.L., Moderate pH changes alter the fluxes, selectivities and limiting currents in ion transport through polyelectrolyte multilayers deposited on membranes, J. Membr. Sci., 2020, vol. 616, p. 118570.
  14. Benvenuti, T., García-Gabaldón, M., Ortega, E.M., Rodrigues, M.A.S., Bernardes, A.M., Pérez-Herranz, V., and Zoppas-Ferreira, J., Influence of the co-ions on the transport of sulfate through anion exchange membranes, J. Membr. Sci., 2017, vol. 542, p. 320.
  15. Li, J., Yuan, S., Wang, J., Zhu, J., Shen, J., and Van der Bruggen, B., Mussel-inspired modification of ion exchange membrane for monovalent separation, J. Membr. Sci., 2018, vol. 553, p. 139.
  16. Mikhaylin, S. and Bazinet, L., Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control, Adv. Colloid and Interface Sci., 2016, vol. 229, p. 34.
  17. Gallya, C., García-Gabaldón, M., Ortega, E.M., Bernardes, A.M., and Pérez-Herranz, V., Chronopotentiometric study of the transport of phosphoric acid anions through an anion-exchange membrane under different pH values, Sep. Pur. Tech., 2020, vol. 238, 116421.
  18. Hao, L., Wang, C., Chen, Q., Yu, X., Liao, J., Shen, J., and Gao, C., A facile approach to fabricate composite anion exchange membranes with enhanced ionic conductivity and dimensional stability for electrodialysis, Sep. Pur. Tech., 2019, vol. 227, p. 115725.
  19. Le, X.T., Concentration polarization and conductance of cation exchange membranes in sulfuric acid and alkaline sulfate media, J. Membr. Sci., 2012, vol. 397–398, p. 66.
  20. Filippov, A.N., Asymmetry of current–voltage characteristics: a bilayer model of a modified ion-exchange membrane, Colloid J., 2016, vol. 78, p. 397.
  21. Filippov, A.N., Asymmetry of current-voltage characteristics of ion-exchange membranes: Model of charge density of fixed groups linear by membrane thickness, Russ. J. Electrochem., 2017, vol. 53, p. 257.
  22. Shaposhnik, V.A., Vasileva, V.I., and Quessore, C., Interferometric determination of the limiting diffusion currents at ion-exchange membranes, Soviet Electrochem., 1991, vol. 27, p. 784.
  23. Shaposhnik, V.A., Vasileva, V.I., and Grigorchuk, O.V., Transport Phenomena in Ion Exchange Membranes (in Russian), Moscow.: Mos. Phys.-Techn. Inst., 2001.
  24. Chamoulaud, G. and Belanger, D., Modification of ion-exchange membrane used for separation of protons and metallic cations and characterization of the membrane by current-voltage curves, J. Colloid. Interface Sci., 2005, vol. 281, p.179.
  25. Ibanez, R., Stamatialis, D.F., and Wessling, M., Role of membrane surface in concentration polarization at cation exchange membranes, J. Membr. Sci., 2004, vol. 239, p. 119.
  26. Pismenskaya, N.D., Mareev, S.A., Pokhidnya, E.V., Larchet, C., Dammak, L., and Nikonenko, V.V., Effect of surface modification of heterogeneous anion-exchange membranes on the intensity of electroconvection at their surfaces, Russ. J. Electrochem., 2019, vol. 55, p. 1203.
  27. Nikonenko, V.V., Mareev, S.A., Pis’menskaya, N.D., Kovalenko, A.V., Urtenov, M.K., Uzdenova, A.M., and Pourcelly, G., Effect of electroconvection and its use in intensifying the mass transfer in electrodialysis (A review), Russ. J. Electrochem., 2017, vol. 53, p. 1122.
  28. Akberova, E.M. and Vasil’eva, V.I., Effect of the resin content in cation-exchange membranes on development of electroconvection, Electrochem. Commun., 2020, vol. 111, p. 106659.
  29. Balster, J., Yildirim, M.H., Stamatialis, D.F., Ibanez, R., Lammertink, R.G.H., Jordan, V., and Wessling, M., Morphology and microtopology of cation-exchange polymers and the origin of the overlimiting current, J. Phys. Chem. B, 2007, vol. 111, p. 2152.
  30. Loza, N.V., Dolgopolov, S.V., Kononenko, N.A., Andreeva, M.A., and Korshikova, Y.S., Effect of surface modification of perfluorinated membranes with polyaniline on their polarization behavior, Russ. J. Electrochem., 2015, vol. 51, p. 538.
  31. Gnusin, N.P., Kononenko, N.A., and Parshikov, S.B., Electrodiffusion through an inhomogeneous ion-exchange membrane with adjacent diffusion layers, Russ. J. Electrochem., 1994, vol. 30, p. 28.
  32. Physics of Electrolytes, Hladik, J., Ed., Orlando: Academic, 1972.
  33. Demina, O.A., Kononenko, N.A., and Falina, I.V., New approach to the characterization of ion-exchange membranes using a set of model parameters, Petroleum Chem., 2014, vol. 54, p. 515.
  34. Demina, O.A. and Falina, I.V., Russian Inventor’s Certificate no. 2014662877, 2014.
  35. Demina, O.A., Shkirskaya, S.A., Kononenko, N.A., and Nazyrova, E.V., Assessing the selectivity of composite ion-exchange membranes within the framework of the extended three-wire model of conduction, Russ. J. Electrochem., 2016, vol. 52, p. 291.
  36. Gnusin, N.P., Parshikov, S.B., and Demina, O.A., Solution of the problem of electrodiffusion transport across an ion-exchange membrane at an arbitrary concentration of the external solution, Russ. J. Electrochem., vol. 34, p. 1185.
  37. Gnusin, N.P., Demina, O.A., Meshechkov, A.I., and Tur’yan, I.Ya., Ion-exchange membrane conductance measured with AC and DC, Soviet Electrochem., 1985, vol. 21, p. 1439.
  38. Demina, O.A., Kononenko, N.A., Falina, I.V., and Demin, A.V., Theoretical estimation of differential coefficients of ion-exchange membrane diffusion permeability, Colloid J., 2017, vol. 79, no. 3, p. 317.
  39. Gnusin, N.P., Berezina, N.P., Shudrenko, A.A., and Ivina, O.P., Electrolyte diffusion across ion-exchange membranes, Russ.J. Phys.Chem. A., 1994, vol. 68, p. 565.
  40. Berezina, N.P., Kononenko, N.A., Dyomina, O.A., and Gnusin, N.P., Characterization of ion-exchange membrane materials: Properties vs structure, Advances in Colloid and Interface Science, 2008, vol. 139, no. 1–2, p. 3.
  41. Gnusin, N.P., Berezina, N.P., Kononenko, N.A., and Dyomina, O.A., Transport structural parameters to characterize ion exchange membranes, J. Membr. Sci., 2004, vol. 243, nos. 1–2, p. 301.
  42. Berezina, N.P., Kononenko, N.A., Demina, O.A., and Gnusin, N.P., Model approach for describing the properties of ion-exchange membranes, Polymer Sci. Series A, 2004, vol. 46, p. 672.
  43. Zabolotsky, V.I. and Nikonenko, V.V., Effect of structural membrane inhomogeneity on transport properties, J. Membr. Sci., 1993, vol. 79, p. 181.
  44. Timofeev, S.V., Kononenko, N.A., Bobrova, L.P., Berezina, N.P., Luticova, E.K., and Dolgopolov, S.B., Electrochemical and diffusion characteristics of modified perfluorinated membranes MF-4SK, Fluorine notes, 2011, vol. 76, p. 7.
  45. Loza, N.V., Kononenko, N.A., Shkirskaya, S.A., and Berezina, N.P., Effect of modification of ion-exchange membrane MF-4SK on its polarization characteristics, Russ. J. Electrochem., 2006, vol. 42. p. 815.
  46. Chemist , s Handbook, vol. 3 (in Russian), Griva, Z.I., Koc, V.A., Piastro, V.D., and Tomarchenko, S.L., Eds., Leningrad: Khimiya, 1964.
  47. Electrochemistry Handbook (in Russian), Suhotin, A.M., Ed., Leningrad: Khimiya, 1981.
  48. Robinson, R.A. and Stokes R.H., Electrolyte Solutions, London: Butterworths, 1959.
  49. Demina, O.A., Falina, I.V., and Kononenko, N.A., Theoretical estimation of conductivity of ion-exchange membranes taking into account to spatial orientation of conducting phases, Russ. J. Electrochem., 2016, vol. 52, p. 299.
  50. Berezina, N.P., Timofeev, S.V., and Kononenko, N.A., Effect of conditioning techniques of perfluorinated sulphocationic membranes on their hydrophylic and electrotransport properties, J. Membr. Sci., 2002, vol. 209, p. 509.
  51. Kononenko, N.A., Fomenko, M.A., and Volfkovich, Y.M., Structure of perfluorinated membranes investigated by method of standard contact porosimetry, Advances in Colloid and Interface Science, 2015, vol. 222, p. 425.
  52. Shalimov, A.S., Perepelkina, A.I., Stenina, I.A., Rebrov, A.I., and Yaroslavtsev, A.B., Ion transport in MF-4SK membranes modified with hydrous zirconium hydrogen phosphate, Russ. J. Inorg. Chem., 2009, vol. 54, p. 356.