Examples



mdbootstrap.com



 
Статья
2020

Synthesis and Luminescent Properties of 3-Acyl-6,8,8,9-tetramethyl-2H-pyrano[3,2-g]hydroquinolin-2-ones


A. Yu. PotapovA. Yu. Potapov, D. Yu. VandyshevD. Yu. Vandyshev, Y. RefkiY. Refki, I. V. LedenyovaI. V. Ledenyova, O. V. OvchinnikovO. V. Ovchinnikov, M. S. SmirnovM. S. Smirnov, Kh. S. ShikhalievKh. S. Shikhaliev
Российский журнал общей химии
https://doi.org/10.1134/S1070363220070075
Abstract / Full Text

A series of 3-R-6,8,8,9-tetramethyl-2H-pyrano[3,2-g]quinolin-2-ones was obtained by condensation of 7-hydroxy-1,2,2,4-tetramethylhydroquinoline-6-carbaldehydes with aroylacetic acid esters. The dependence of the UV and photoluminescence spectra on the structure of the obtained compounds was studied.

Author information
  • Voronezh State University, 394006, Voronezh, RussiaA. Yu. Potapov, D. Yu. Vandyshev, Y. Refki, I. V. Ledenyova, O. V. Ovchinnikov, M. S. Smirnov & Kh. S. Shikhaliev
References
  1. Li, C., Nat. Mater., 2014, vol. 13, p. 110. https://doi.org/10.1038/nmat3877
  2. Kooreman, N.G., Ransohoff, J.D., and Wu, J.C., Nat. Mater., 2014, vol. 13, p. 106. https://doi.org/10.1038/nmat3868
  3. Reynolds, G.A. and Drexhage, K.-H., Opt. Commun., 1975, vol. 13, p. 222. https://doi.org/10.1016/0030-4018(75)90085-1
  4. Jones, G.II, Jackson, W.R., and Halpern, A.M., Chem. Phys. Lett., 1980, vol. 72, p. 391. https://doi.org/10.1016/0009-2614(80)80314-9
  5. Corrie, J.E.T., Munasinghe, V.R.N., and Rettig, W., J. Heterocycl. Chem., 2000, vol. 37, p. 1447. https://doi.org/10.1002/jhet.5570370608
  6. Murata, C., Masuda, T., Kamochi, Y., Todoroki, K., Yoshida, H., Nohta, H., Yamaguchi, M., and Takadate, A., Chem. Pharm. Bull., 2005, vol. 53, p. 750. https://doi.org/10.1248/cpb.53.750
  7. Zhang, X., Zhang, J.-J., and Xia, Y.-Y., J. Photochem. Photobiol., 2008, vol. 194, p. 167. https://doi.org/10.1016/j.jphotochem.2007.08.004
  8. Lin, Q., Bao, C., Fan, G., Cheng, S., Liu, H., Liu, Z., and Zhu, L., J. Mater. Chem., 2012, vol. 22, p. 6680. https://doi.org/10.1039/c2jm33364c
  9. Ni, X., Guo, Y., Bu, H., An, J., and En, D., J. Chin. Chem. Soc., 2012, vol. 59, p. 1439. https://doi.org/10.1002/jccs.201200010
  10. Schiedel, M.-S., Briehn, C.A., and Bauerle, P., Angew. Chem., 2001, vol 113, p. 4813. https://doi.org/10.1002/1521-3757(20011217)113:24<4813:AID-ANGE4813>3.0.CO;2-T
  11. Nagy, K., Orban, E., Bзsze, S., and Kele, P., Chem. Asian J., 2010, vol. 5, p. 773. https://doi.org/10.1002/asia.200900477
  12. Sun, Y.-Q., Liu, J., Zhang, J., Yang, T., and Guo, W., Chem. Commun., 2013, vol. 49, p. 2637. https://doi.org/10.1039/C3CC39161B
  13. Richard, J.-A., Massonneau, M., Renard, P.-Y., and Romieu, A., Org. Lett., 2008, vol. 10, p. 4175. https://doi.org/10.1021/ol801582w
  14. Huang, H.-C., Wang, K.-L., Huang, S.-T., Lin, H.-Y., and Lin, C.-M., Biosens. Bioelectron., 2011, vol. 26, p. 3511. https://doi.org/10.1016/j.bios.2011.01.036
  15. Cao, X., Lin, W., Yu, Q., and Wang, J., Org. Lett., 2011, vol. 13, p. 6098. https://doi.org/10.1021/ol202595t
  16. Hara, K., Sato, T., Katoh, R., Furube, A., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., and Arakawa, H., J. Phys. Chem. B, 2003, vol. 107, p. 597. https://doi.org/10.1021/jp026963x
  17. Hara, K., Dan-oh, Y., Kasada, C., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., and Arakawam, H., Langmuir, 2004, vol. 20, p. 4205. https://doi.org/10.1021/la0357615
  18. Wang, Z.-S., Cui, Y., Dan-oh, Y., Kasada, C., Shinpo, A., and Hara, K., J. Phys. Chem. (C), 2007, vol. 111, p. 7224. https://doi.org/10.1021/jp067872t
  19. Wang, Z.-S., Dan-oh, Y.C.Y., Kasada, C., Shinpo, A., and Hara, K., J. Phys. Chem. (C), 2008, vol. 112, p. 17011. https://doi.org/10.1021/jp067872t
  20. Nizamov, S., Willig, K.I., Sednev, M.V., Belov, V.N., and Hell, S.W., Chem. Eur. J., 2012, vol. 18, p. 16339. https://doi.org/10.1002/chem.201202382
  21. Schill, H., Nizamov, S., Bottanelli, F., Bierwagen, J., Belov, V.N., and Hell, S.W., Chem. Eur. J., 2013, vol. 19, p. 16556. https://doi.org/10.1002/chem.201302037
  22. Manahelohe, G.M., Potapov, A.Yu., and Shikhaliev, Kh.S., Russ. Chem. Bull., 2016, no. 4, p. 1145. https://doi.org/10.1007/s11172-016-1427-7
  23. Danish, Kh., Sayeed, M., Meshari, A.A., and Mohammed, I.A., Tetrahedron Lett., 2017, vol. 58, p. 3183. https://doi.org/10.1016/j.tetlet.2017.07.018
  24. Ranjith, Ch., Paul, N., and Vijayan, K.K., Asian J. Chem., 2011, vol. 23, p. 235.
  25. Verdia, P., Santamarta, F., and Tojo, E., Molecules, 2011, vol. 16, p. 4379. https://doi.org/10.3390/molecules16064379
  26. He, X., Shang, Y., Zhou, Y., Yu, Zh., Han, G., Jin, W., and Chen, J., Tetrahedron, 2015, vol. 71, p. 863. https://doi.org/10.1016/j.tet.2014.12.042