Статья
2019

Specific Features of Ion Transport in New Nanocomposite Gel Electrolytes Based on Cross-Linked Polymers and Silica Nanoparicles


G. R. Baymuratova G. R. Baymuratova , A. V. Chernyak A. V. Chernyak , A. A. Slesarenko A. A. Slesarenko , G. Z. Tulibaeva G. Z. Tulibaeva , V. I. Volkov V. I. Volkov , O. V. Yarmolenko O. V. Yarmolenko
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519060041
Abstract / Full Text

The spesific features of ion transport are studied in the nanocomposite system based on a network matrix synthesized by radical polymerization of polyethylene glycol diacrylate in the presence of liquid aprotic electrolyte containing 1 M LiBF4 in γ-butyrolactone and SiO2 nanopowder. The self-diffusion coefficients measured by 7Li NMR spectroscopy with pulsed field gradient have a maximum at 2 wt % SiO2 nanoparticles. Nanocomposites of the latter composition exhibit the highest cation transport numbers (0.49) and the maximum of conductivity in the temperature interval under study (from –70 to 100°С): 4 mS/cm at 20°С and 1 mS/cm at –70°С. The second conductivity maximum at 6 wt % is characterized merely by the low effective activation energy of conduction. Possible mechanisms are invoked to explain the increase in conductivity. The first mechanism is based on the increase in the number of mobile charge carriers which may be a result of salt dissociation to ions, the second mechanism is associated with the development of a large number of favorable pathways for ion transport.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    G. R. Baymuratova, A. V. Chernyak, A. A. Slesarenko, G. Z. Tulibaeva, V. I. Volkov & O. V. Yarmolenko

  • Science Research Center, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    A. V. Chernyak

References
  1. Agrawal, R.C. and Pandey, G.P., Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, J. Phys. D: Appl. Phys., 2008, vol. 41, p. 223001.
  2. Keller, M., Varzi, A., and Passerini, S., Hybrid electrolytes for lithium metal batteries, J. Power Sources, 2018, vol. 392, p. 206.
  3. Yarmolenko, O.V., Yudina, A.V., and Khatmullina, K.G., Nanocomposite polymer electrolytes for lithium power sources (review), Russ. J. Electrochem., 2018, vol. 54, p. 325.
  4. Capiglia, C., Mustarelli, P., Quartarone, E., Tomasi, C., and Magistris, A., Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes, Solid State Ionics, 1999, vol. 118, p. 73.
  5. Mustarelli, P., Capiglia, C., Quartarone, E., Tomasi, C., Ferloni, P., and Linati, L., Cation dynamics and relaxation in nanoscale polymer electrolytes: a 7Li NMR study, Phys. Rev. B, 1999, vol. 60, p. 7228.
  6. Croce, F., Persi, L., Scrosati, B., Serraino-Fiory, F., Plichta, E., and Hendrickson, M.A., Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes, Electrochim. Acta, 2001, vol. 46, p. 2457.
  7. Jayathilaka, P.A.R.D., Dissanayake, M.A.K.L., Albinsson, I., and Mellander, B.E., Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system, Electrochim. Acta, 2002, vol. 47, p. 3257.
  8. Chung, S.H., Wang, Y., Greenbaum, S.G., Marcinek, M., Persi, L., Croce, F., Wieczorek, W., and Scrosati, B., Nuclear magnetic resonance studies of nanocomposite polymer electrolytes, J. Phys.: Condens. Matter, 2001, vol. 13, p. 11763.
  9. Croce, F., Appetecchi, G.B., Persi, L., and Scrosati, B., Nanocomposite polymer electrolytes for lithium batteries, Nature, 1998, vol. 394, p. 456.
  10. Kim, Y.W., Lee, W., and Choi, B.K., Relation between glass transition and melting of PEO salt complexes, Electrochim. Acta, 2000, vol. 45, p. 1473.
  11. Best, A.S., Adebahr, J., Jacobsson, P., MacFarlane, D.R., and Forsyth, M., Microscopic interactions in nanocomposite electrolytes, Macromolecules, 2001, vol. 34, p. 4549.
  12. Tambelli, C.C., Bloise, A.C., Rosário, A.V., Pereira, E.C., Magon C.J., and Donoso, J.P., Characterisation of PEO-Al2O3 composite polymer electrolyte, Electrochim. Acta, 2002, vol. 47, p. 1677.
  13. Binesh, N. and Bhat, S.V., Effects of a plasticiser on protonic conductivity of polymer electrolyte (PEG)100NH4ClO4, Solid State Ionics, 1999, vol. 122, p. 291.
  14. Indris, S., Heitjans, P., Roman, H.E., and Bunde, A., Nanocrystalline versus microcrystalline Li2O:B2O3 composites: anomalous ionic conductivities and percolation theory, Phys. Rev. Lett., 2000, vol. 84, p. 2889.
  15. Bunde, A. and Dieterich, W., Percolation in composites, J. Electroceramics, 2000, vol. 5, p. 81.
  16. Indris, S., Heitjans, P., Ulrich, M., and Bunde, A., AC and DC conductivity in nano- and microcrystalline Li2O:B2O3 composites: experimental results and theoretical models, Z. Phys. Chem., 2005, vol. 219, p. 89.
  17. Chilaka, N. and Ghosh, S., Solid-state poly(ethylene glycol)-polyurethane/ polymethylmethacrylate/ rutile TiO2 nanofiber composite electrolyte-correlation between morphology and conducting properties, Electrochim. Acta, 2012, vol. 62, p. 362.
  18. Johan, M.R., Yasin, S.M., Ibrahim, M., and Bayesian, S., Neural networks model for ionic conductivity of nanocomposite solid polymer electrolyte system (PEO–LiCF3SO3–DBP–ZrO2), Int. J. Electrochem. Sci., 2012, vol. 7, p. 222.
  19. Nimah, Y.L., Ming-Yao Cheng, M.Y., Cheng, J.H., Rick, J., and Hwang, B.-H., Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries, J. Power Sources, 2015, vol. 278, p. 375.
  20. Kim, S. and Park, S.-J., Preparation and ion-conducting behaviors of poly(ethylene oxide)-composite electrolytes containing lithium montmorillonite, Solid State Ionics, 2007, vol. 178, p. 973.
  21. Zhou, R., Liu, W., Yao, X., Leong, Y.W., and Lu, X., Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO2 nanoparticles as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 16040.
  22. Boor, S., Rajiv, K., and Sekhon, S.S., Conductivity and viscosity behavior of PMMA based gels and nano dispersed gels: Role of dielectric constant of solvent, Solid State Ionics, 2005, vol. 176, p. 1577.
  23. Kumar, D., Suleman, M. and Hashmi, S.A., Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposites for sodium-sulfur batteries, Solid State Ionics, 2011, vol. 202, p. 43.
  24. Kumar, D. and Hashmi, S.A., Ion transport and ion-filler-polymer interaction in poly(methylmethacrylate)-based, sodium ion conducting, gel polymer electrolyte dispersed with silica nano-particles, J. Power Sources, 2010, vol. 195, p. 5101.
  25. Ramesh, S. and Wen, L.C., Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nano-composite PMMA–LiCF3SO3–SiO2, Ionics, 2010, vol. 16, p. 255.
  26. Lee, Y.-S., Shin, W.-K., Kim, J.S., and Kim, D.-W., High performance composite polymer electrolytes for lithium-ion polymer cells composed of a graphite negative electrode and LiFePO4 positive electrode, RSC Adv., 2015, vol. 5, p. 18359.
  27. Yudina, A.V., Berezin, M.P., Baymuratova, G.R., Shuvalova, N.I., and Yarmolenko, O.V., Specific features of the synthesis and the physicochemical properties of nanocomposite polymer electrolytes based on poly(ethylene glycol) diacrylate with the introduction of SiO2, Russ. Chem. Bull., 2017, vol. 66, p. 1278.
  28. Yarmolenko, O.V., Khatmullina, K.G., Baimuratova, G.R., Tulibaeva, G.Z., Bogdanova, L.M., and Shestakov, A.F., On the nature of the double maximum conductivity of nanocomposite polymer electrolytes for lithium power sources, Mendeleev Comm., 2018, vol. 28, p. 41.
  29. Baymuratova, G.R., Slesarenko, A.A., Yudina, A.V., and Yarmolenko, O.V., Conducting properties of nanocomposite polymer electrolytes based on polyethylene glycol diacrylate and SiO2 at the interface with a lithium electrode, Russ. Chem. Bull., 2018, vol. 67, no. 9, p. 1648.
  30. Yarmolenko, O.V., Khatmullina, K.G., Bogdanova, L.M., Shuvalova, N.I., Dzhavadyan, E.A., Marinin, A.A., and Volkov, V.I., Effect of TiO2 nanoparticle additions on the conductivity of network polymer electrolytes for lithium power sources, Russ. J. Electrochem., 2014, vol. 50, p. 336.
  31. Yarmolenko, O.V., Yudina, A.V., Marinin, A.A., Chernyak, A.V., Volkov, V.I., Shuvalova, N.I., and Shestakov, A.F., Nanocomposite network polymer gel-electrolytes: TiO2- and Li2TiO3-nanoparticle effects on their structure and properties, Russ. J. Electrochem., 2015, vol. 51, p. 412.
  32. Chernyak, A.V., Berezin, M.P., Slesarenko, N.A., Zabrodin, V.A., Volkov, V.I., Yudina, A.V., Shuvalova, N.I., and Yarmolenko, O.V., Influence of the reticular polymeric gel-electrolyte structure on ionic and molecular mobility of an electrolyte system salt-ionic liquid: LiBF4-1-ethyl-3-methylimidazolium tetrafluoroborate, Russ. Chem. Bull., 2016, vol. 65, p. 2053.
  33. Evans, J., Vincent, C.A., and Bruce, P.G., Electrochemical measurement of transference numbers in polymer electrolytes, Polymer, 1987, vol. 28, p. 2324.
  34. Volkov, V.I. and Marinin, A.A., NMR methods for studying ion and molecular transport in polymer electrolytes, Russ. Chem. Rev., 2013, vol. 82, p. 248.
  35. Yarmolenko, O.V., Khatmullina, K.G., Kurmaz, S.V., Baturina, A.A., Bubnova, M.L., Shuvalova, N.I., Grachev, V.P., and Efimov, O.N., New lithium-conducting gel electrolytes containing superbranched polymers Rus. J. Electrochem., 2013, vol. 49, p. 252.
  36. Yarmolenko, O.V., Khatmullina, K.G., Tulibaeva, G.Z., Bogdanova, L.M., and Shestakov, A.F, Polymer electrolytes based on poly(ester diacrylate), ethylene carbonate, and LiClO4: a relationship of the conductivity and structure of the polymer according to IR spectroscopy and quantum chemical modeling data, Russ. Chem. Bull., 2012, vol. 61, p. 539.
  37. Yarmolenko, O.V., Yudina, A.V., Ignatova, A.A., Shuvalova, N.I., Martynenko, V.M., Bogdanova, L.M., Chernyak, A.V., Zabrodin, V.A., and Volkov, V.I., New polymer electrolytes based on polyethylene glycol diacrylate–LiBF4–1-ethyl-3-methylimidazolium tetrafluoroborate with the introduction of alkylene carbonates, Russ. Chem. Bull., 2015, vol. 64, p. 2505.
  38. Maklakov, A.I., Skirda, V.D., and Fatkullin, N.F., Samodiffuziya v ransvorakh i rasplavakh polimerov, (Self-diffusion in Polymer Solutions and Melts), Kazan: Kazan University, 1987.
  39. Zugmann, S., Fleischmann, M., Amereller, M. Gschwind, R.M., Wiemhöfer, H.D., and Gores, H.J., Measurements of transference numbers for lithium ion electrolytes via four different methods, a comparative study, Electrochim. Acta, 2011, vol. 56, p. 3926.