Modeling of Ionic Conductivity in Inorganic Compounds with Multivalent Cations

E. A. Morkhova E. A. Morkhova , A. A. Kabanov A. A. Kabanov , V. A. Blatov V. A. Blatov
Российский электрохимический журнал
Abstract / Full Text

This work is dedicated to search for promising ion-conducting crystals by using of high-throughput computer screening of the ICSD database of inorganic structures and quantum-mechanical modeling of ion transport. As a result, 246 magnesium-, calcium-, or strontium–oxygen-containing compounds are selected with 1D, 2D, 3D-migration maps of divalent ions that have not yet been studied as to the presence of ion conductivity. For ten structures with the simplest migration channel systems, including such well-known cation conductors, as Mg0.5Ti2(PO4)3, CaAl2O4, Sr0.5Al11O17, quantum-chemical DFT calculations are carried out and cation migration energies are obtained. Among the studied compounds, the structures of Mg3Nb6O11 and Mg3V2(SiO4)3 are characterized by the lowest migration energies of magnesium ions and small band gaps and can be considered as promising cation conductors for application in magnesium batteries.

Author information
  • Samara Center for Theoretical Materials Science, Samara University, 443068, Samara, Russia

    E. A. Morkhova, A. A. Kabanov & V. A. Blatov

  • Samara State Technical University, SCTMS, 443100, Samara, Russia

    E. A. Morkhova, A. A. Kabanov & V. A. Blatov

  1. Lundgren, C.A., Xu, K., Jow, T.R., Allen, J., and Zhang, S.S., Lithium-ion batteries and materials, in Springer Handbook of Electrochemical Energy, Berlin, Heidelberg: Springer, 2017, pp. 449–494.
  2. Xiao, R., Li, H., and Chen, L., High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory, Sci. Rep., 2015, vol. 5, p. 14 227.
  3. Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., and Chen, C., Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 2012, vol. 208, p. 210.
  4. Ling, C., Zhang, R., Arthur, T.S., and Mizuno, F., How general is the conversion reaction in Mg battery cathode: a case study of the magnesiation of α-MnO2, Chem. Mater., 2015, vol. 27, no. 16, p. 5799.
  5. Canepa, P., Bo, S.H., Gautam, G.S., Key, B., Richards, W.D., Shi, T., and Ceder, G., High magnesium mobility in ternary spinel chalcogenides, Nat. Commun., 2017, vol. 8, no. 1, p. 1759.
  6. Sheng, O., Jin, C., Luo, J., Yuan, H., Huang, H., Gan, Y., and Tao, X., Mg2B2O5 Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance, Nano Lett., 2018, vol. 18, no. 5, p. 3104.
  7. Porob, D.G. and Row, T.G., Synthesis crystal structure and ionic conductivity of Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10, J. Solid State Chem., 2004, vol. 177, no. 12, p. 4535.
  8. Aguadero, A., Calle, C.D.L., Alonso, J.A., Escudero, M.J., Fernández-Díaz, M.T., and Daza, L., Structural and electrical characterization of the novel SrCo0.9Sb0.1O3 – δ perovskite: evaluation as a solid oxide fuel cell cathode material, Chem. Mater., 2007, vol. 19, no. 26, p. 6437.
  9. Nestler, T., Fedotov, S., Leisegang, T., and Meyer, D.C., Towards Al mobility in crystalline solids: critical review and analysis, Crit. Rev. Solid State Mater. Sci., 2019.
  10. Imanaka, N., Okamoto, K., and Adachi, G.Y., New chlorine gas sensor fabricated from chlorine anion-and scandium(III) cation-conducting solid electrolytes, Sens. Actuators, B, 2003, vol. 93, no. 1–3, p. 233.
  11. Orikasa, Y., Masese, T., Koyama, Y., Mori, T., Hattori, M., Yamamoto, K., and Kim, J., High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements, Sci. Rep., 2014, vol. 4, p. 5622.
  12. Aurbach, D., Levi, E., Mitelman, A., Lancry, E., Mizrahi, O., Gofer, Y., and Suresh, G. S., US Patent 9012072, 2015.
  13. Nestler, T., Meutzner, F., Kabanov, A.A., Zscho-rnak, M., Leisegang, T., and Meyer, D.C., A combined theoretical approach for identifying battery materials: Al3+ mobility in oxides, Chem. Mater., 2019, vol. 31, no. 3, p. 737.
  14. Filsø, M.Ø., Turner, M.J., Gibbs, G.V., Adams, S., Spackman, M.A., and Iversen, B.B., Visualizing Lithium-Ion Migration Pathways in Battery Materials, Chem. – Eur. J., 2013, vol. 19, no. 46, p. 15 535.
  15. Sale, M. and Avdeev, M., 3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes, J. Appl. Crystallogr., 2012, vol. 45, no. 5, p. 1054.
  16. Willems, T.F., Rycroft, C.H., Kazi, M., Meza, J.C., and Haranczyk, M., Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous Mesoporous Mater., 2012, vol. 149, no. 1, p. 134.
  17. Küppers, H., Liebau, F., and Spek, A.L., The determination of pore volumes, pore shapes and diffusion paths in microporous crystals, J. Appl. Crystallogr., 2006, vol. 39, no. 3, p. 38.
  18. Thomas, N.W., Characterization of voids in crystalline materials: application to oxide ceramic systems, Acta Crystallogr., Sect. B, 1991, vol. 4, no. 5, p. 588.
  19. Brown, I.D., Recent developments in the methods and applications of the bond valence model, Chem. Rev., 2009, vol. 109, no. 12, p. 6858.
  20. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, p. 3576.
  21. Anurova, N.A., Blatov, V.A., Ilyushin, G.D., Bla-tova, O.A., Ivanov-Schitz, A.K., and Dem’yanets, L.N., Migration maps of Li+ cations in oxygen-containing compounds, Solid State Ionics, 2008, vol. 179, no. 39, p. 2248.
  22. Meutzner, F., Münchgesang, W., Kabanova, N.A., Zschornak, M., Leisegang, T., Blatov, V.A., and Meyer, D.C., On the Way to New Possible Na-ion Conductors: The Voronoi–Dirichlet Approach, Data Mining and Symmetry Considerations in Ternary Na Oxides, Chem. – Eur. J., 2015, vol. 21, no. 46, p. 16 601.
  23. Fedotov, S.S., Kabanova, N.A., Kabanov, A.A., Blatov, V.A., Khasanova, N.R., and Antipov, E.V., Crystallochemical tools in the search for cathode materials of rechargeable Na-ion batteries and analysis of their transport properties, Solid State Ionics, 2008, vol. 314, p. 129.
  24. Blatov, V.A., Ilyushin, G.D., Blatova, O.A., Anu-rova, N.A., Ivanov-Schits, A.K., and Dem’yanets, L.N., Analysis of migration paths in fast-ion conductors with Voronoi–Dirichlet partition, Acta Crystallogr. Sect. B: Struct. Sci., 2006, vol. 62, no. 6, p. 1010.
  25. DeBoer, B.G., Young, R.A., and Sakthivel, A., X-ray Rietveld structure refinement of Ca, Sr and Ba meta-antimonates, Acta Crystallogr. Sect. C, 1994, vol. 50, no. 4, p. 476.
  26. Tealdi, C., Islam, M.S., Malavasi, L., and Flor, G., Defect and dopant properties of MgTa2O6, J. Solid State Chem., 2004, vol. 177, no. 11, p. 4359.
  27. Schmalle, H., Gurtner, C., Oswald, H.R., and Reller, A., The crystal structure of SrIrO3, Z. Kristallogr. – Cryst. Mater., 1999, vol. 191, no. 1–4, p. 239.
  28. Hohenberg, P. and Kohn, W., Inhomogeneous electron gas, Phys. Rev., 1964, vol. 136, no. 3B, p. B864.
  29. Kohn, W. and Sham, L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev., 1965, vol. 140, no. 4A, p. A1133.
  30. Kresse, G. and Furthmüller, J., Efficient iterative schemes for ab initio total–energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, vol. 54, no. 16, p. 11 169.
  31. Henkelman, G. and Jónsson, H., Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys., 2000, vol. 113, no. 22, p. 9978.
  32. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865.
  33. Karlsruhe, F.I.Z., Inorganic Crystal Structure Database (ICSD), 2018.
  34. Blatov, V.A., Voronoi-dirichlet polyhedra in crystal chemistry: theory and applications, Crystallogr. Rev., 2004, vol. 10, no. 4, p. 249.
  35. Jin, J., Wang, Y., Zhu, C., Lusi, A., and Zhu, X., Preparation and characterization of Ca3Co2O6 as cathode for intermediate temperature solid oxide fuel cells, Mater. Lett., 2017, vol. 187, p. 53.
  36. Christian, P., Eylem, C., Wang, X., Bae, I.T., Sunstrom, J., and Komm, R., High-Energy Bismuth(V) Metal Oxide Cathode Materials for Alkaline Cells, ECS Meeting Abstracts, 2006, Abstract no. 96.
  37. Riess, I., Mixed ionic-electronic conductors – material properties and applications, Solid State Ionics, 2003, vol. 157, nos. 1–4, p. 1.
  38. Drożdż, E., Łącz, A., Koleżyński, A., Mikuła, A., and Mars, K., Experimental and theoretical studies of structural and electrical properties of highly porous Sr1–xYxTiO3, Solid State Ionics, 2017, vol. 302, p. 173.
  39. Chang, C.Y.S., Lubomirsky, I., and Kim, S., Applicability of a linear diffusion model to determination of the height of the potential barrier at the grain boundaries of Fe-doped SrTiO3, Phys. Chem. Chem. Phys., 2018, vol. 20, p. 19 250.
  40. Takahashia, H. and Takamura, H., Ionic Conductivity and Crystal Structure of TM-Doped Mg0.5Ti2 (PO4)3 (TM = Fe, Mn, Co and Nb), Key Eng. Mater., 2012, vol. 508, p. 291.
  41. Ivanov-Shitz, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), St. Petersburg: St. Petersburg Univ., 2000.
  42. Boilot, J.P., Lee, M.R., Colomban, P., Collin, G., and Comes, R., Fast divalent ion conduction — ion ordering in β and β" alumina (Sr2+, Cd2+, Pb2+), J. Phys. Chem. Solids, 1986, vol. 47, no. 7, p. 693.
  43. Curtarolo, S., Setyawan, W., Hart, G.L., Jahnatek, M., Chepulskii, R.V., Taylor, R.H., and Mehl, M.J., AFLOW: an automatic framework for high-throughput materials discovery, Comput. Mater. Sci., 2012, vol. 58, p. 218.
  44. Kulish, V.V. and Manzhos, S., Comparison of Li, Na, Mg and Al-ion insertion in vanadium pentoxides and vanadium dioxides, RSC Adv., 2017, vol. 7, no. 30, p. 18 643.
  45. Liu, M., Rong, Z., Malik, R., Canepa, P., Jain, A., Ceder, G., and Persson, K.A., Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations, Energy Environ. Sci., 2015, vol. 8, no. 3, p. 964.