Examples



mdbootstrap.com



 
Статья
2022

Nitration of N-(fluorodinitroethyl)pyrazoles


A. G. GladyshkinA. G. Gladyshkin, A. A. AnisimovA. A. Anisimov, A. B. SheremetevA. B. Sheremetev
Российский химический вестник
https://doi.org/10.1007/s11172-022-3580-5
Abstract / Full Text

Conditions for the introduction of the nitro group at the position 4 of N-(fluorodinitroethyl)pyrazoles bearing an electron-withdrawing substituent at the position 3 were found. The structures of the products were established by multinuclear NMR spectroscopy and X-ray crystallographic analysis.

Author information
  • N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian FederationA. G. Gladyshkin, I. L. Dalinger & A. B. Sheremetev
  • A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991, Moscow, Russian FederationA. A. Anisimov & I. V. Ananyev
  • N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991, Moscow, Russian FederationI. V. Ananyev
  • N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 119991, Moscow, Russian FederationA. N. Pivkina
References
  1. A. B. Sheremetev, Chem. Heterocycl. Compd., 2017, 53, 629; DOI: https://doi.org/10.1007/s10593-017-2104-y.
  2. G. B. Manelis, G. M. Nazin, Z. I. Rubtsov, V. A. Strunin, Thermal Decomposition and Combustion of Explosives and Propellants, Taylor & Francis, New York, 2003.
  3. N. V. Muravyev, D. B. Meerov, K. A. Monogarov, I. N. Melnikov, E. K. Kosareva, L. L. Fershtat, A. B. Sheremetev, I. L. Dalinger, I. V. Fomenkov, A. N. Pivkina, Chem. Eng. J., 2021, 421, 129804; DOI: https://doi.org/10.1016/j.cej/2021.129804.
  4. Sh. L. Guseinov, S. G. Fedorov, Nanoporoshki aluminia, bora, boridov aluminia i kremniya v vysokoenergeticheskikh materialakh [Nanopowders of Aluminum, Boron, Aluminum and Silicon Borides in Energetic Materials], Tarus Press, Moscow, 2015 (in Russian).
  5. D. B. Lempert, A. B. Sheremetev, Russ. Chem. Bull., 2018, 67, 2065; DOI: https://doi.org/10.1007/s11172-018-2330-1.
  6. S. K. Valluri, M. Schoenitz, E. Dreizin, Defence Technol., 2019, 15, 1; DOI: https://doi.org/10.1016/j.dt.2018.06.001.
  7. Energeticheskie kondensirovanny esistemy. Ehntsiklopedicheskiy slovar’ [Energetic Condensed Systems. Encyclopedic Dictionary], Ed. B. P. Zhukov, 2nd ed., Yanus-K, Moscow, 2000 (in Russian).
  8. J. Ma, H. Yang, G. Cheng, New. J. Chem., 2017, 41, 12700; DOI: https://doi.org/10.1039/C7NJ02717F.
  9. O. P. Shitov, V. L. Korolev, V. S. Bogdanov, V. A. Tartakovsky, Russ. Chem. Bull., 2003, 52, 695; DOI: https://doi.org/10.1023/A:1023971109551.
  10. A. B. Sheremetev, N. S. Aleksandrova, I. L. Yudin, Mendeleev Commun., 2003, 31; DOI: https://doi.org/10.1070/MC2003v013n01ABEH001675.
  11. T. V. Romanova, M. P. Zelenov, S. F. Mel’nikova, I. V. Tselinsky, Russ. Chem. Bull., 2009, 58, 2188; DOI: https://doi.org/10.1007/s11172-009-0303-0.
  12. D. E. Chavez, D. A. Parrish, L. Mitchell, Angew. Chem., Int. Ed., 2016, 55, 8666; DOI: https://doi.org/10.1002/anie.201604115.
  13. A. A. Gidaspov, V. V. Bakharev, K. Yu. Suponitsky, V. G. Nikitin, A. B. Sheremetev, RSC Adv., 2016, 6, 104325; DOI: https://doi.org/10.1039/C6RA24629J.
  14. O. A. Luk’yanov, N. I. Shlykova, G. V. Pokhvisneva, T. V. Ternikova, K. A. Monogarov, D. B. Meerov, Yu. V. Nelyubina, P. V. Dorovatovskii, T. S. Kon’kova, Russ. Chem. Bull., 2019, 68, 110; DOI: https://doi.org/10.1007/s11172-019-2424-4.
  15. N. V. Palysaeva, A. G. Gladyshkin, I. A. Vatsadze, K. Yu. Suponitsky, D. E. Dmitriev, A.B. Sheremetev, Org. Chem. Front., 2019, 6, 249; DOI: https://doi.org/10.1039/c8qo01173g.
  16. A. G. Gladyshkin, A. B. Sheremetev, Chem. Heterocycl. Compd., 2019, 53, 779; DOI: https://doi.org/10.1007/s10593-019-02535-0.
  17. S. G. Zlotin, I. L. Dalinger, N. N. Makhova, V. A. Tartakovsky, Russ. Chem. Rev., 2020, 89, 1; DOI: https://doi.org/10.1070/RCR4908.
  18. O. T. O’Sullivan, M. J. Zdilla, Chem. Rev., 2020, 120, 5682; DOI: https://doi.org/10.1021/acs.chemrev.9b00804.
  19. S. G. Zlotin, A. M. Churakov, M. P. Egorov, L. L. Fershtat, M. S. Klenov, I. V. Kuchurov, N. N. Makhova, G. A. Smirnov, Yu. V. Tomilov, V. A. Tartakovsky, Mendeleev Commun., 2021, 31, 731; DOI: https://doi.org/10.1016/j.mencom.2021.11.001.
  20. J. Zhou, J. L. Zhang, B. Z. Wang, L. L. Qiu, R. Q. Xu, A. B. Sheremetev, FirePhysChem, 2022, 2, 83; DOI: https://doi.org/10.1016/j.fpc.2021.09.005.
  21. M. I. Kanischev, N. V. Korneeva, S. A. Shevelev, A. A. Fainzilberg, Chem. Heterocycl. Compd., 1988, 24, 353; DOI: https://doi.org/10.1007/BF00478852.
  22. S. A. Shevelev, I. L. Dalinger, Russ. J. Org. Chem., 1998, 34, 1071.
  23. A. A. Zaitsev, I. L. Dalinger, S. A. Shevelev, Russ. Chem. Rev., 2009, 78, 589.
  24. S. Zhang, Z. Gao, D. Lan, Q. Jia, N. Liu, J. Zhang, K. Kou, Molecules, 2020, 25, 3475; DOI: https://doi.org/10.3390/molecules25153475.
  25. J. W. A. M. Janssen, H. J. Koeners, C. G. Kruse, C. L. Habrakern, J. Org. Chem., 1973, 38, 1777; DOI: https://doi.org/10.1021/jo00950a001.
  26. S. Ek, L. Yudina Wahlström, N. Latypov, J. Chem. Chem. Eng., 2011, 5, 929.
  27. I. L. Dalinger, A. V. Kormanov, I. A. Vatsadze, O. V. Serushkina, T. K. Shkineva, K. Yu. Suponitsky, A. N. Pivkina, A. B. Sheremetev, Chem. Heterocycl. Compd., 2016, 52, 1025; DOI: https://doi.org/10.1007/s10593-017-2003-2.
  28. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, Crystal Explorer 17, University of Western Australia, Perth, Australia, 2017.
  29. M. S. Westwell, M. S. Searle, D. L. Wales, D. H. Williams, J. Am. Chem. Soc., 1995, 117, 5013; DOI: https://doi.org/10.1021/ja00123a001.
  30. PILEM; DOI: https://doi.org/10.1039/D2TA01339H.
  31. A. A. Gidaspov, V. A. Zalomlenkov, V. V. Bakharev, V. E. Parfenov, E. V. Yurtaev, M. I. Struchkova, N. V. Palysaeva, K. Yu. Suponitsky, D. B. Lempert, A. B. Sheremetev, RSC Adv., 2016, 6, 34921; DOI: https://doi.org/10.1039/c6ra05826d.
  32. A. B. Sheremetev, N. S. Aleksandrova, N. V. Palysaeva, M. I. Struchkova, V. A. Tartakovsky, K. Yu. Suponitsky, Chem. Eur. J., 2013, 19, 12446; DOI: https://doi.org/10.1002/chem.201302126.
  33. I. L. Dalinger, K. Yu. Suponitsky, A. N. Pivkina, A. B. Sheremetev, Prop. Explos. Pyrotech., 2016, 41, 789; DOI: https://doi.org/10.1002/prep.201600050.
  34. I. L. Dalinger, K. Yu. Suponitsky, T. K. Shkineva, D. B Lempert, A. B. Sheremetev, J. Mater. Chem. A, 2018, 6, 14780; DOI: https://doi.org/10.1039/C8TA05179H.
  35. I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, A. V. Kormanov, M. I. Struchkova, K. Yu. Suponitsky, A. A. Bragin, K. A. Monogarov, V. P. Sinditskii, A. B. Sheremetev, Chem. Asian J., 2015, 10, 1987; DOI: https://doi.org/10.1002/asia.201500533.
  36. APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
  37. G. M. Sheldrick, Crystal Structure Refinement with SHELXL, Acta Crystallographica Section C Structural Chemistry, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.
  38. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, K. N. Jr. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford, 2004.
  39. K. Yu. Suponitsky, K. A. Lyssenko, I. V. Ananyev, A. M. Kozeev, A. B. Sheremetev, Cryst. Growth Des., 2014, 14, 4439; DOI: https://doi.org/10.1021/cg500533f.
  40. A. O. Dmitrienko, V. A. Karnoukhova, A. A. Potemkin, M. I. Struchkova, I. A. Kryazhevskikh, K. Yu. Suponitsky, Chem. Heterocycl. Compd., 2017, 53, 532; DOI: https://doi.org/10.1007/s10593-017-2088-7.
  41. A. B. Sheremetev, N. S. Aleksandrova, S. S. Semyakin, K. Yu. Suponitsky, D. B. Lempert, Chem. Asian J., 2019, 14, 4255; DOI: https://doi.org/10.1002/asia.201901280.
  42. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1990.
  43. T. A. Keith, AIMAll, Version 14.11.23. TK Gristmill Software, Overland Park KS, USA, 2014 (http://aim.tkgristmill.com).
  44. K. Yu. Suponitsky, A. F. Smol’yakov, I. V. Ananyev, A. V. Khakhalev, A. A. Gidaspov, A. B. Sheremetev, ChemistrySelect, 2020, 5, 14543; DOI: https://doi.org/10.1002/slct.20200402.
  45. K. Yu. Suponitsky, A. A. Anisimov, I. V. Ananyev, A. A. Lashakov, S. Yu. Osintseva, V. A. Zalomlenkov, A. A. Gidaspov, Chem. Heterocycl. Compd., 2021, 57, 266; DOI: https://doi.org/10.1007/s10593-021-02903-9.
  46. K. Yu. Suponitsky, I. V. Fedyanin, V. A. Karnoukhova, V. A. Zalomlenkov, A. A. Gidaspov, V. V. Bakharev, A. B. Sheremetev, Molecules, 2021, 26, 7452; DOI: https://doi.org/10.3390/molecules26247452.
  47. I. L. Dalinger, O. V. Serushkina, D. L. Lipilin, A. A. Anisimov, K. Yu. Suponitsky, A. B. Sheremetev, ChemPlusChem, 2019, 84, 802; DOI: https://doi.org/10.1002/cplu.201900243.
  48. I. L. Dalinger, T. K. Shkineva, I. A. Vatsadze, A. V. Kormanov, A. M. Kozeev, K. Yu. Suponitsky, A. N. Pivkina, A. B. Sheremetev, FirePhysChem, 2021, 1, 83; DOI: https://doi.org/10.1016/j.fpc.2021.04.005.