Статья
2019

Study of the Corrosion Resistance Properties of Ni–P and Ni–P–C Nanocomposite Coatings in 3.5 wt % NaCl Solution


Ramin Badrnezhad Ramin Badrnezhad , Hamed Pourfarzad Hamed Pourfarzad , Ali Reza Madram Ali Reza Madram , Mohammad Reza Ganjali Mohammad Reza Ganjali
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519030029
Abstract / Full Text

The present paper aims to compare the corrosion protection performance of electrodeposited Ni‒P with Ni–P–C nanocomposite coatings in 3.5 wt % NaCl solution in order to assess the influence of carbon nanoparticles on corrosion behavior of these coatings, by the potentiodynamic polarisation Tafel curves and electrochemical impedance spectroscopic (EIS) techniques. The effect of heat treatment on the coatings performance was also studied. The results revealed that heat treated Ni–P–C nanocomposite coating in air at 673 K significantly improved resistance to corrosion compared with Ni–P coatings. This behavior was related to incorporation of carbon nanoparticles into Ni–P matrix using in-situ electrochemical reduction of L-lysine, which shift the corrosion potential (Ecorr) positively, also the corrosion current density (Icorr) and the double layer capacitance (Cdl) values decrease, the charge transfer resistance (Rct) and efficiencies of inhibition (IE, %) increase, indicating improvement in the corrosion resistance in seawater environment. Microstructure, phase change and chemical composition of the prepared coatings were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD) and elemental microanalysis (EDX), respectively.

Author information
  • Department of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran, 15875-1774, Iran

    Ramin Badrnezhad

  • Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, 14155-6455, Iran

    Hamed Pourfarzad & Mohammad Reza Ganjali

  • Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, 14155-6455, Iran

    Ali Reza Madram & Mohammad Reza Ganjali

References
  1. Berkh, O., Bodnevas, A., and Zahavi, J., Electrodeposited Ni–P–SiC composite coatings, Plat. Surf. Finish, 1995, vol. 82, pp. 62–66.
  2. Sharma, S.B., Agarwala, R.C., Agarwala, V., and Ray, S., Dry sliding wear and friction behavior of Ni–P–ZrO2Al2O3 composite electroless coatings on aluminum, Mater. Manuf. Processes, 2002, vol. 17, pp. 637–649.
  3. Aghaie, E., Najafi, A., Maleki-Ghaleh, H., and Mohebi, H., Effect of SiC concentration in electrolyte on Ni–SiC composite coating properties, Surf. Eng., 2013, vol. 29, pp. 177–182.
  4. Chen, W., Gao, W., and He, Y., A novel electroless plating of Ni–P–TiO2 nano-composite coatings, Surf. Coat. Technol., 2010, vol. 204, pp. 2493–2498.
  5. Liu, B., Liu, L.R., and Liu, X.J., Effects of carbon nanotubes on hardness and internal stress in Ni–P coatings, Surf. Eng., 2013, vol. 29, pp. 507–510.
  6. Alirezaei, S., Monirvaghefi, S.M., Salehi, M., and Saatchi, A., Wear behavior of Ni–P and Ni–P–Al2O3 electroless coatings, Wear, 2007, vol. 262, pp. 978–985.
  7. Farzaneh, A., Mohammadi, M., Ehteshamzadeh, M., and Mohammadi, F., Electrochemical and structural properties of electroless Ni–P–SiC nanocomposite coatings, Appl. Surf. Sci., 2013, vol. 276, pp. 697–704.
  8. Sharma, A. and Singh, A.K., Electroless Ni–P–PTFe-Al2O3 dispersion nanocomposite coating for corrosion and wear resistance, J. Mater. Eng. Perform., 2014, vol. 23, pp. 142–151.
  9. Liu Jianggao, Wang Shubin, Li Pengyang, Feng Mengjie, and Yang Xinwang, A modified dip-coating method to prepare BN coating on SiC fiber by introducing the sol-gel process, Surf. Coat. Technol., 2016, vol. 286, pp. 57–63.
  10. Rossi, S., Chini, F., Straffelini, G., Bonora, P.L., Moschini, R., and Stampali, A., Corrosion protection properties of electroless Nickel/PTFE, Phosphate/MoS2 and Bronze/PTFE coatings applied to improve the wear resistance of carbon steel, Surf. Coat. Technol., 2003, vol. 173, pp. 235–242.
  11. Paseka, I., Influence of hydrogen absorption in amorphous Ni–P electrodes on double layer capacitance and charge transfer coefficient of hydrogen evolution reaction, Electrochim. Acta, 1999, vol. 44, pp. 4551–4558.
  12. Burchardt, T., The hydrogen evolution reaction on NiPx alloys, Int. J. Hydrogen Energy, 2000, vol. 25, p. 627.
  13. Burchardt, T., Hydrogen evolution on NiPx alloys: the influence of sorbed hydrogen, Int. J. Hydrogen Energy, 2001, vol. 26, pp. 1193–1198.
  14. Popczyk, M., Budniok, A., and Lasia, A., Electrochemical properties of Ni–P electrode materials modified with nickel oxide and metallic cobalt powders, Int. J. Hydrogen Energy, 2005, vol. 30, pp. 265–271.
  15. Burchardt, T., Hansen, V., and Valand, T., Microstructure catalytic activity towards the hydrogen evolution reaction of electrodeposited NiPx alloys, Electrochim. Acta, 2001, vol. 46, pp. 2761–2766.
  16. Krolikowski, A. and Wiecko, A., Impedance studies of hydrogen evolution on Ni–P alloys, Electrochim. Acta, 2002, vol. 47, pp. 2065–2069.
  17. Shibli, S.M.A. and Dilimon, V.S., Effect of phosphorous content and TiO2-reinfocement on Ni–P electroless plates for hydrogen evolution reaction, Int. J. Hydrogen Energy, 2007, vol. 32, pp. 1694–1700.
  18. Bredael, E., Blanpain, B., Celis, J.P., and Roos, J.R., On the amorphous and crystallinestate of electrodeposited nickel-phosphorous coatings, J. Electrochem. Soc., 1994, vol. 141, pp. 294–299.
  19. Daly, B.P. and Barry, F.J., Electrochemical nickel-phosphorous alloy formation, Int. Mater. Rev., 2003, vol. 48, pp. 326–338.
  20. Lee, H.B., Wuu, D.S., Lee, C.Y., and Lin, C.S., Study of the corrosion behavior of nanocrystalline Ni–P electrodeposited coating, Metall. Mater. Trans. A, 2010, vol. 41, pp. 450–459.
  21. Cordeiro, G., Mattos, O.R., Barcia, O.E., Beaunier, L., Deslouis, C., and Tribollet, B., Anodic dissolution of nickel in concentrated sulfuric acidic solutions, J. Appl. Electrochem., 1996, vol. 26, pp. 1083–1092.
  22. Barbosa, M.R., Bastos, J.A., Garca, J.J., and Vicente, F., Chloride role in the surface of nickel electrode, J. Electrochim. Acta, 1998, vol. 44, pp. 957–865.
  23. Seyeux, A., Maurice, V., Klein, L.H., and Marcus, P., Initiation of localized corrosion at the nanoscale by competitive dissolution and passivation of nickel surfaces, J. Electrochim. Acta, 2008, vol. 54, pp. 540–544.
  24. Sun, F., Meng, G., Zhang, T., Shao, Y., Wang, F., and Dong, C., Electrochemical corrosion behavior of nickel coating with high density nano-scale twins (NT) in solution with Cl, J. Electrochim. Acta, 2009, vol. 54, pp. 1578–1583.
  25. Selembo, P.A., Merrill, M.D., and Logan, B.E., The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells, Power Sources, 2009, vol. 190, pp. 271–278.
  26. Grant, J.C., Nickel.Cadmium Battery Application Engineering Handbook, 3rd ed., Gainesville: General Electric Company, 1975.
  27. Ahn, K.H., Song, K.G., Cha, H.Y., and Yeom, I.T., Removal of ions in nickel electroplating rinse water using low-pressure nanofiltration, J. Desal., 1999, vol. 122, pp. 77–84.
  28. Mathu, J., Agarwal, N., Swaroop, R., and Shah, N., Economics of producing hydrogen as transportation fuel using offshore wind energy systems, Energy Policy, 2008, vol. 36, pp. 1212–1215.
  29. Shervedani, R.K. and Madram, A.R., Electrocatalytic activities of nanocomposite Ni81P16C3 electrode for hydrogen evolution reaction in alkaline solution by electrochemical impedance spectroscopy, Int. J. Hydrogen Energy, 2008, vol. 33, pp. 2468–2476.
  30. Madram, A.R., Pourfarzad, H., and Zare, H.R., Study of the corrosion behavior of electrodeposited Ni–P and Ni–P–C nanocomposite coatings in 1 M NaOH, J. Electrochim. Acta, 2012, vol. 85, pp. 263–267.
  31. Wu, Y.T., Lei, L., Shen, B., and Hu, W.B., Investigation in electroless Ni–P–Cg(graphite)–SiC composite coating, Surf. Coat. Technol., 2006, vol. 201, pp. 441–445.
  32. Meguro, S., Sasaki, T., Katagiri, H., Habazaki, H., and Kawashima, A., Electrodeposited Ni–Fe–C cathodes for hydrogen evolution articles, J. Electrochem. Soc., 2000, vol. 147, pp. 3003–3309.
  33. Hashimoto, K., Sasaki, T., Meguro, S., and Asami, K., Nanocrystalline electrodeposited Ni–Mo–C cathodes for hydrogen production, J. Mater Sci Eng., 2004, vol. 375, pp. 942–945.
  34. Dong, H., Sun, Y., and Bell, T., Enhanced corrosion resistance of duplex coatings, Surf. Coat. Technol., 1997, vol. 90, pp. 91–101.
  35. Shervedani, R.K. and Lasia, A., Study of the hydrogen evolution reaction on Ni–Mo–P electrodes in alkaline solutions, J. Electrochem. Soc., 1998, vol. 145, pp. 2219–2225.
  36. Stern, M. and Geary, A., The mechanism of passivating-type inhibitors TECHNICAL PAPERS, J. Electrochem. Soc., 1958, vol. 105, pp. 638–647.
  37. Mishra, R. and Balasubramaniam, R., Effect of nano-crystalline grain size on the electrochemical and corrosion behavior of nickel, J. Corros. Sci., 2004, vol. 46, pp. 3019–3029.
  38. Magdalena, P., Antoni, B., and Eugeniusz, Ł., Structure and corrosion resistance of nickel coatings containing tungsten and silicon powders, J. Mater. Character., 2007, vol. 58, pp. 371–375.
  39. Priyantha, N., Jayaweera, P., Macdonald, D.D., and Sun, A., An electrochemical impedance study of Alloy 22 in NaCl brine at elevated temperature. I. Corrosion behavior, J. Electroanal. Chem., 2004, vol. 572, pp. 409–419.
  40. Macdonald, D.D., Sun, A., Priyantha, N., and Jayaweera, P., An electrochemical impedance study of Alloy-22 in NaCl brine at elevated temperature: II. Reaction mechanism analysis, J. Electroanal. Chem., 2004, vol. 572, pp. 421–431.
  41. Li, Q., Yang, Q.X., Zhang, L., Wang, J., and Chen, B., Corrosion resistance and mechanical properties of pulse electrodeposited Ni–TiO2 composite coating for sintered NdFeB magnet, J. Alloys Compd., 2009, vol. 482, pp. 339–344.
  42. Szczygieł, B. and Kolodziej, M., Composite Ni/Al2O3 coatings and their corrosion resistance, J. Electrochim. Acta, 2005, vol. 50, pp. 4188–4195.
  43. Lian, J.S., Li, G.Y., Niu, L.Y., Gu, C.D., Jiang, Z.H., and Jiang, Q., Electroless Ni–P deposition plus zinc phosphate coating on AZ91D magnesium alloy, J. Surf. Coat. Technol., 2006, vol. 200, pp. 5956–5962.
  44. Balaraju, J.N., Ezhil Selvi, V., Willium Grips, V.K., and Rajam, K.S., Electrochemical studies on electroless ternary and quaternary Ni–P based alloys, J. Electrochim. Acta, 2006, vol. 52, pp. 1064–1074.
  45. Abdel Aal, A., Hard and corrosion resistant nanocomposite coating for Al alloy, J. Mater. Sci. Eng., 2008, vol. 474, pp. 181–187.
  46. Hu, C.C. and Bai, A., Effects of annealing temperatures on the physicochemical properties of nickel-phosphorus deposits, J. Mater. Chem. Phys., 2003, vol. 79, pp. 49–57.
  47. Shervedani, R.K. and Lasia, A., Evaluation of the surface roughness of microporous Ni–Zn–P electrodes by in situ methods, J. Appl. Electrochem., 1999, vol. 29, pp. 979–986.
  48. Contreras, A., Leon, C., Jimenez, O., Sosa, E., and Perez, R., Electrochemical behavior and microstructural characterization of 1026 Ni–B coated steel, J. Appl. Surf. Sci., 2006, vol. 253, pp. 592–599.
  49. Shervedani, R.K., Mehrjardi, A.H., and Zamiri, N., A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor, J. Bioelectrochem., 2006, vol. 69, pp. 201–208.