Examples



mdbootstrap.com



 
Статья
2020

Sol-gel synthesis of lithium niobate doped by zinc and boron and study of the luminescent properties of ceramics LiNbO3: Zn: B


S. M. MasloboevaS. M. Masloboeva, M. V. SmirnovM. V. Smirnov, M. N. PalatnikovM. N. Palatnikov
Российский химический вестник
https://doi.org/10.1007/s11172-020-2853-0
Abstract / Full Text

A technological scheme was developed for the sol-gel synthesis of lithium niobate doped by zinc and boron with sol-gel method, and the optimal conditions at each stage of the process were determined. The limiting concentrations of doping impurities, at which a single-phase charge can be synthesized, were established. A ceramic composition LiNbO3: Zn: B with a bulk weight of ~2.3 g cm−3 is formed during the thermal treatment of the hydrate residue at 1100 ?? and an exposure for 3 h. Owing to the proposed method the product quality can be increased and the cost of the syntgesis of the LiNbO3: Zn: B ceramics minimized. The study of the luminescence properties of the ceramics based on the charge prepared from the charge mixture synthesized by the sol-gel method revealed that boron in the lithium niobate structure is an activator of luminescence in the high-energy visible spectral range. The obtained results can serve as a basis for the technology of production of both crystalline and ceramic new functional materials.

Author information
  • I. V. Tananaev Institute of Rare Element and Mineral Chemistry and Technology, Kola Research Center, Russian Academy of Sciences, 26a Akademgorodok, 184209, Apatity, Russian FederationS. M. Masloboeva, M. V. Smirnov & M. N. Palatnikov
References
  1. M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, 1977, 680 pp.
  2. Yu. S. Kuz'minov, Elektroopticheskii i nelineino-opticheskii kristall niobata litiya [Electrooptical and nonlinear Optical Crystal and Lithium Niobate], Nauka, Moscow, 1987, 264 pp. (in Russian).
  3. T. Volk, M. Wohleke, Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching, Springer, Berlin, 2008, 250 pp.
  4. N. V. Sidorov, T. R. Volk, B. N. Mavrin, V. T. Kalinnikov, Niobat litiya: defekty, fotorefraktsiya, kolebatel.nyi spektr, polyaritony [Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, and Polaritons], Nauka, Moscow, 2003, 255 pp. (in Russian).
  5. N. V. Sidorov, A. A. Yanichev, M. N. Palatnikov, A. A. Gabain, O. Yu. Pikul., Optika i Spektroskopiya [Optics and Spectroscopy], 2014, 117, 76 (in Russian).
  6. N. V. Sidorov, M. N. Palatnikov, A. V. Syui, E. A. Antonycheva, A. A. Yanichev, A. A. Gabain, A. A. Kruk, Optika i Spektroskopiya [Optics and Spectroscopy], 2014, 117, 327 (in Russian).
  7. C. Fischer, M. Wohlecke, T. Volk, N. Rubinina, Phys. Stat. Sol., 1993, 137, 247.
  8. O. V. Makarova, M. N. Palatnikov, I. V. Biryukova, N. A. Teplyakova, N. V. Sidorov, Neorg. Mater. [Inorg. Mater.], 2018, 54, 53 (in Russian).
  9. N. V. Sidorov, N. A. Teplyakova, R. A. Titov, M. N. Palatnikov, Zh. Tekhn. Fiz. [J. Techn. Phys.], 2018, 88, 1820 (in Russian).
  10. N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, R. A. Titov, K. Bormanis, Integrated Ferroelectrics, 2019, 196, 39.
  11. S. M. Masloboeva, M. N. Palatnikov, L. G. Arutyunyan, D. V. Ivanenko, Izv. SPbGTI(TU) [Bulletin of St. Petersburg State Technical Institute (Technical University)], 2017, 38, 34 (in Russian).
  12. S. M. Masloboeva, L. G. Arutyunyan, M. N. Palatnikov, Russ. J. Inorg. Chem., 2018, 63, 449.
  13. M. N. Palatnikov, N. V. Sidorov, V. T. Kalinnikov, Segnetoelektricheskie tverdye rastvory na osnove oksidnykh soedinenii niobiya i tantala: sintez, issledovanie strukturnogo uporyadochivaniya i fizicheskikh kharakteristik [Segnetoelectric Solid Solutions Based on Oxide Compounds of Niobium and Tantalum: Syn thesis and Study of Structural Ordering and Physical Characteristics], Nauka, St. Petersburg, 2001, 302 pp. (in Russian).
  14. M. N. Palatnikov, I. V. Birukova, S. M. Masloboeva, O. V. Makarova, D. V. Manukovskaya, N. V. Sidorov, J. Crystal Growth, 2014, 386, 113.
  15. N. Mkhitaryan, Zh. Zaraket, N. Kokanyan, M. Eilleri, Euro Phys. J. Appl. Phys., 2019, 85, 30502.
  16. Y. Xiaolong, X. Guanfeng, L. Heping, Z. Jianguo, W. Xiu, Cryst. Res. Technol., 1996, 4, 521.
  17. T. Zhang, B. Wang, F. R. Ling, Sh. Q. Fang, Y. H. Xu, Materials Chemistry and Physics, 2004, 83, 350.
  18. Y. Fan, C. Xu, S. Xia, C. Guan, L. Cao, Q. He, G. Jin, J. Crystal Growth, 2010, 312, 1875.
  19. E. V. Stroganova, Doct. (Phys.-Math.) Dissertation, Kuban State University, Krasnodar, 2017, 279 pp. (in Russian).
  20. S. M. Masloboeva, G. I. Kadyrova, L. G. Arutyunyan, Russ. J. Inorg. Chem., 2016, 63, 412.
  21. M. N. Palatnikov, N. V. Sidorov, R. A. Titov, N. A. Teplyakova, O. V. Makarova, Perspektivnye Materialy [Perspective Materials], 2018, 6, 5 (in Russian).
  22. O. Voloshyna, I. Boiaryntseva, D. Spassky, O. Sidletskiy, Solid State Phenomena, 2015, 230, 172.
  23. D. M. Krol, G. Blasse, R. C. Powell, J. Chem. Phys., 1980, 73, 163.
  24. A. García-Cabañes, A. Sanz-García, J. M. Cabrera, F. Agullo-Lopez, Phys. Rev. B., 1988, 37, 6085.