Статья
2020

Electrodes of Synthetic Diamond Compacts Added with Platinum: The Platinum Effect on Electrochemical Activity


Yu. V. Pleskov Yu. V. Pleskov , M. D. Krotova M. D. Krotova , R. A. Khmelnitskiy R. A. Khmelnitskiy , E. A. Ekimov E. A. Ekimov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520090098
Abstract / Full Text

Conducting diamond composite electrodes are prepared by converting graphite into diamond at high pressure and high temperature in two- and three-component growth systems Pt–C and Pt–C–B; physical and electrochemical properties of the compacts are studied. A diamond–platinum-compact electrode grown from the Pt–C two-component system behaves qualitatively as purely platinum one in the chloride ion anodic oxidation reaction, when corrected to the platinum actual quantity at its surface. Voltammetric data well agree with results of electrochemical impedance measurements in f-sweep and E-sweep modes. Diamond doping with boron during the synthesis in the Pt–C–B system provides electrodes electroactive with respect to the chloride ion oxidation reaction; their activity increased with the increasing of platinum content at the electrode surface. The catalyst (platinum) introducing directly onto the diamond-compact surface is shown being still more effective (with respect to the chlorine anodic evolution reaction) than the bulk doping with platinum during the compact synthesis.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    Yu. V. Pleskov & M. D. Krotova

  • Lebedev Physical Institute, Russian Academy of Sciences, 119333, Moscow, Russia

    R. A. Khmelnitskiy & E. A. Ekimov

  • Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 142190, Troitsk, Moscow, Russia

    E. A. Ekimov

References
  1. Pleskov, Yu.V., Krotova, M.D., Elkin, V.V., and Ekimov, E.A., Electrochemical Behavior of New Electrode Material: Compact of Boron-doped Synthetic Diamond, Russ. J. Electrochem., 2016, vol. 52, p. 1.
  2. Pleskov, Yu.V., Krotova, M.D., Elkin, and V.V., Ekimov, E.A., Electrochemical Behaviour of Boron-doped Diamond Compacts—a New Electrode Material, Electrochim. Acta, 2016, vol. 201, p. 268.
  3. Pleskov, Yu.V., Krotova, M.D., Elkin, V.V., and Ekimov, E.A., Compacts of Boron-doped Synthetic Diamond: Lowering of Synthesis Temperature and Its Effect on the Doping Level and Electrochemical Behavior, Russ. J. Electrochem., 2017, vol. 53, p. 1345.
  4. Pleskov, Yu.V., Sakharova, A.Ya., Krotova, M.D., Bouilov, L.L., and Spitsyn, B.V., Photoelectrochemical behavior of semiconductor diamond, Elektrokhimiya, 1987, vol. 24, p. 69.
  5. Electrochemistry of Diamond, Eds. Fujishima, A., Einaga, Y., Rao, T.N., and Tryk, D.A., Tokyo: BKC & Amsterdam: Elsevier, 2005.
  6. Synthetic Diamond Films: Preparation, Electrochemistry, Characterization and Applications, Eds. Brillas, E. and Martinez-Huitle, C.A., New York: Wiley, 2011.
  7. Topics in Applied Physics, vol. 121, Ed. Yang, N., Springer, 2015.
  8. Notsu, H., Yagi, I., Tatsuma, T., Tryk, D.A., and Fujishima, A., Surface carbonyl groups on oxidized diamond electrodes, J. Electroanal. Chem., 2000, vol. 492, p. 31.
  9. Awada, M., Strojek, J.W., and Swain, G.M., Platinum particles deposited on synthetic boron-doped diamond, J. Electrochem. Soc., 1995, vol. 142, p. L42.
  10. Watanabe, T., Ivandini, T.A., Makide, Y., Fujishima, A., and Einaga, Y., Selective detection method derived from a controlled diffusion process at metal-modified diamond electrodes, Anal. Chem., 2006, vol. 78, p. 7857.
  11. Pleskov, Yu.V., Krotova, M.D., Maslakov, K.I., Sirotinkin, V.P., and Ekimov, E.A., Synthesis of Boron-doped Carbonado—a New Electrode Material—in C–Metal–B Growth Systems Aimed at the Lowering of the Synthesis Temperature without Loss of Electrochemical Activity, J. Solid State Electrochem., 2018, vol. 22, p. 3129.
  12. Kondrina, K.M., Kudryavtsev, O.S., Vlasov, I.I., Khmelnitskiy, R.A., and Ekimov, E.A., High-pressure synthesis of microdiamonds from polyethylene terephthalate, Diamond Related Mater., 2018, vol. 83, p. 190.
  13. Brazhkin, V.V., Ekimov, E.A., Lyapin, A.G., Popova, S.V., Rakhmanina, A.V., Stishov, S.M., and Kato, K., Lattice parameters and thermal expansion of superconducting boron-doped diamonds, Phys. Rev. B, 2006, vol. 74, p. 140502.
  14. Angus, J.C., Martin, H.B., Landau, U., Evstefeeva, Y.E., Miller, B., and Vinokur, N., Conducting diamond electrodes: applications in electrochemistry, New Diamond Frontier Carbon Technol., 1999, vol. 9, p. 175.
  15. Kokoulina, D.V., Krasovitskaya, Yu.I., and Krishtalik, L.I., The state of the platinum anode surface in acidic chloride solutions (in Russian), Elektrokhimiya, 1971, vol. 7, p. 1154.
  16. Kokoulina, D.V., Krasovitskaya, Yu.I., and Krishtalik, L.I., Comparing of polarization curves at platinum anodes with the nature of surface coating (in Russian), Elektrokhimiya, 1971, vol. 7, p. 1218.
  17. Pleskov, Yu.V., Electrochemistry of Diamond: A Review, Russ. J. Electrochem., 2002, vol. 38, p. 1275.
  18. Elkin, V.V. and Krotova, M.D., Impedance of Two-Stage Adsorptive Oxidation with Quadratic Dependence of Activation Energy on Potential on a Boron-Doped Diamond Anode, Russ. J. Electrochem., 2015, vol. 51, p. 7.
  19. Elkin, V.V., Krotova, M.D., and Pleskov, Yu.V., Polarization complex-plane thin-film impedance for two-stage charge-transfer reaction complicated with an intermediate adsorption (by example of benzene oxidation at boron-doped diamond electrode), Electrochim. Acta, 2014, vol. 144, p. 412.