Examples



mdbootstrap.com



 
Статья
2020

Adsorption of 1,2-Dichlorobenzene on a Carbon Nanomaterial Prepared by Decomposition of 1,2-Dichloroethane on Nickel Alloys


Yu. I. BaumanYu. I. Bauman, O. V. NetskinaO. V. Netskina, S. A. MukhaS. A. Mukha, I. V. MishakovI. V. Mishakov, Yu. V. ShubinYu. V. Shubin, V. O. StoyanovskiiV. O. Stoyanovskii, A. Yu. NalivaikoA. Yu. Nalivaiko, A. A. VedyaginA. A. Vedyagin, A. A. GromovA. A. Gromov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220120095
Abstract / Full Text

Concept of complex processing of chlorinated hydrocarbons, involving catalytic decomposition of 1,2-dichloroethane on Ni–M alloys to obtain a carbon nanomaterial (CNM) showing high performance in adsorption treatment of water to remove 1,2-dichlorobenzene, was presented. A series of finely dispersed Ni–Pd (5 wt %) and Ni–Mo (5 wt %) alloys were synthesized and studied. The samples were studied as catalysts in decomposition of C2H4Cl2 vapor at 600°С to obtain a carbon nanomaterial. The addition of 5 wt % second metal leads to an increase in the yield of the carbon nanomaterial from 20.1 to 25.4 (Ni–Pd) and 31.8 gCNM g–1cat (Ni–Mo). Analysis by electron microscopy and Raman spectroscopy shows that the carbon product consists of nanofibers of segmented structure, constituted by a poorly ordered graphite phase. The specific surface area of the carbon nanomaterial is 230–280 m2 g–1. The CNM/Ni, CNM/Ni–Pd, and CNM/Ni–Mo samples obtained were tested as adsorbents for water treatment to remove dissolved 1,2-dichlorobenzene (с0 = 73–880 μM) in the batch mode. The 1,2-dichlorobenzene adsorption isotherms were constructed. The degree of filling of the carbon nanomaterial surface with the adsorbate at equilibrium is 43–47%, exceeding by a factor of more than 2 the utilization efficiency of AG-2000 activated carbon (SBET = 1230 m2 g–1).

Author information
  • Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, RussiaYu. I. Bauman, O. V. Netskina, S. A. Mukha, I. V. Mishakov, V. O. Stoyanovskii & A. A. Vedyagin
  • Novosibirsk National Research State University, 630090, Novosibirsk, RussiaO. V. Netskina & Yu. V. Shubin
  • National University of Science and Technology MISIS, 119049, Moscow, RussiaYu. I. Bauman, I. V. Mishakov, A. Yu. Nalivaiko, A. A. Vedyagin & A. A. Gromov
  • Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, RussiaYu. V. Shubin
References
  1. Muganlinskii, F.F., Treger, Yu.A., and Lyushin, M.M., Khimiya i tekhnologiya galogenorganicheskikh soedinenii (Chemistry and Technology of Halogenated Organic Compounds), Moscow: Khimiya, 1991.
  2. Flid, M.R. and Treger, Yu.A., Vinilkhlorid: khimiya i tekhnologiya (Vinyl Chloride: Chemistry and Technology), Moscow: Kalvis, 2008, book 1.
  3. Zhou, Y., Tigane, T., Li, X., Truu, M., Truu, J., and Mander, U., Water Res., 2013, vol. 47, no. 1, pp. 102–110. https://doi.org/10.1016/j.watres.2012.09.030
  4. Yufit, S.S., Yady vokrug nas: Vyzov chelovechsetvu (Poisons around Us: a Challenge for Mankind), Moscow: Klassik Stil’, 2002.
  5. Stockholm Convention on Persistent Organic Pollutants, ratified by Federal Law no. 164-FZ of June 27, 2011.
  6. Yalkowsky, S.H. and Yan, H., Handbook of Aqueous Solubility Data, CRC, 2003, pp. 205–206.
  7. Pelech, R., Milchert, E., and Wrobel, R., J. Hazard. Mater., 2006, vol. 137, no. 3, pp. 1479–1487. https://doi.org/10.1016/j.jhazmat.2006.04.023
  8. Kirsanov, M.P. and Shishkin, V.V., Foods Raw Mater., 2016, vol. 4, pp. 148–153. https://doi.org/10.21179/2308-4057-2016-1-148-153
  9. Mishakov, I.V., Chesnokov, V.V., Buyanov, R.A., and Chuvilin, A.L., React. Kinet. Catal. Lett., 2002, vol. 76, no. 2, pp. 361–367. https://doi.org/10.1023/A:1016504532177
  10. Bauman, Yu.I., Mishakov, I.V., Vedyagin, A.A., and Dmitriev, S.V., Catal. Ind., 2012, vol. 4, no. 4, pp. 261–266. https://doi.org/10.1134/S2070050412040034 
  11. Mishakov, I.V., Vedyagin, A.A., Bauman, Y.I., Shubin, Y.V., and Buyanov, R.A., in Carbon Nanofibers: Synthesis,Applications, and Performance, Nova Science, 2018, pp. 77–181.
  12. Bauman, Y.I., Mishakov, I.V., Rudneva, Y.V., Plyusnin, P.E., Shubin, Y.V., Korneev, D.V., and Vedyagin, A.A., Ind. Eng. Chem. Res., 2019, vol. 58, no. 2, pp. 685–694. https://doi.org/10.1021/acs.iecr.8b02186
  13. Bauman, Y.I., Rudneva, Y.V., Mishakov, I.V., Plyusnin, P.E., Shubin, Y.V., Korneev, D.V., Stoyanovskii, V.O., Vedyagin, A.A., and Buyanov, R.A., Heliyon, 2019, vol. 5, ID e02428. https://doi.org/10.1016/j.heliyon.2019.e02428
  14. Rudnev, A.V., Lysakova, A.S., Plyusnin, P.E., Bauman, Yu.I., Shubin, Yu.V., Mishakov, I.V., Vedyagin, A.A., and Buyanov, R.A., Inorg. Mater., 2014, vol. 50, no. 6, pp. 566–571. https://doi.org/10.1134/S0020168514060156.
  15. Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B., and Jia, Z., Chem. Phys. Lett., 2003, vol. 376, nos. 1–2, pp. 154–158. https://doi.org/10.1016/S0009-2614(03)00960-6
  16. Klyuchnikov, N.G., Rukovodstvo po neorganicheskomu sintezu (Guide to Inorganic Synthesis), Moscow: Khimiya, 1965.
  17. Li, X. and Chen, G.-H., Mater. Lett., 2009, vol. 63, no. 11, pp. 930–932. https://doi.org/10.1016/j.matlet.2009.01.042
  18. Negrea, P., Sidea, F., Negrea, A., Lupa, L., Ciopec, M., and Muntean, C., Bul. Sti. Univ. Politeh. Timisoara, 2008, vol. 53, nos. 1–2, pp. 144–146.
  19. Kazakova, M.A., Kuznetsov, V.L., Bokova-Sirosh, S.N., Krasnikov, D.V., Golubtsov, G.V., Romanenko, A.I., Prosvirin, I.P., Ishchenko, A.V., Orekhov, A.S., Chuvilin, A.L., and Obraztsova, E.D., Phys. Status Solidi B, 2018, vol. 255, p. 1700260. https://doi.org/10.1002/pssb.201700260
  20. Bayat, N., Rezaei, M., and Meshkani, F., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 5494–5503. https://doi.org/10.1016/j.ijhydene.2016.01.134
  21. Grabke, H.J., Spiegel, M., and Zahs, A., Mater. Res., 2004, vol. 7, pp. 89–95. https://doi.org/10.1590/S1516-14392004000100013
  22. Chambers, A. and Baker, R.T.K., J. Phys. Chem. B, 1997, vol. 101, pp. 1621–1630. https://doi.org/10.1021/jp963031i
  23. Nemanich, R.J. and Solin, S.A., Phys. Rev. B, 1979, vol. 20, pp. 392–401. https://doi.org/10.1103/PhysRevB.20.392
  24. Tuinstra, F. and Koenig, J.L., J. Chem. Phys., 1970, vol. 53, pp. 1126–1130. https://doi.org/10.1063/1.1674108
  25. Ferrari, A.C. and Robertson, J., Phys. Rev. B, 2000, vol. 61, pp. 14095–14107. https://doi.org/10.1103/PhysRevB.61.14095
  26. Derylo-Marczewska, A., Marczewski, A.W., Winter, Sz., and Sternik, D., Appl. Surf. Sci., 2010, vol. 256, no. 17, pp. 5164–5170. https://doi.org/10.1016/j.apsusc.2009.12.085
  27. Oliveira, L.C.A., Rios, R.V.R.A., Fabris, J.D., Garg, V., Sapag, K., and Lago, R.M., Carbon, 2002, vol. 40, no. 12, pp. 2177–2183. https://doi.org/10.1016/S0008-6223(02)00076-3
  28. Derylo-Marczewska, A., Buczek, B., and Swiatkowski, A., Appl. Surf. Sci., 2011, vol. 257, pp. 9466–9472. https://doi.org/10.1016/j.apsusc.2011.06.036
  29. Kaneko, Y., Abe, M., and Ogino, K., Colloids Surf., 1989, vol. 37, pp. 211–222. https://doi.org/10.1016/0166-6622(89)80120-9
  30. Giles, C.H., MacEwan, T.H., Nakhwa, S.N., and Smith, D., J. Chem. Soc., 1960, vol. 111, pp. 3973–3993. https://doi.org/10.1016/j.ijhydene.2016.01.134
  31. Sule, M.N., Templeton, M.R., and Bond, T., Environ. Technol., 2015, vol. 37, no. 11, pp. 1382–1389. https://doi.org/10.1080/09593330.2015.1116610
  32. Netskina, O.V., Komova, O.V., Tayban, E.S., Oderova, G.V., Mukha, S.A., Kuvshinov, G.G., and Simagina, V.I., Appl. Catal. A, 2013, vol. 467, pp. 386–393. https://doi.org/10.1016/j.apcata.2013.07.046