Examples



mdbootstrap.com



 
Статья
2019

Control of the Sorption Properties and Wettability of a Nonwoven Polypropylene Material by Direct Gas Fluorination


T. Yu. KumeevaT. Yu. Kumeeva, N. P. ProrokovaN. P. Prorokova
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427219050173
Abstract / Full Text

The effect of direct gas fluorination on the surface properties of a nonwoven polypropylene material was studied. Direct gas fluorination with mixtures of different compositions allows directional variation of the surface properties of the nonwoven polypropylene material. The surface becomes more hydrophobic when using a mixture of fluorine and nitrogen but less hydrophobic when using a mixture of fluorine, oxygen, and nitrogen. The modification leads to changes in the chemical composition of the surface and in the roughness of the material. The nonwoven polypropylene materials thus obtained exhibit increased sorption capacity for spent oil or water, respectively. Variation of the properties of the nonwoven polypropylene material allows expansion of its applications.

Author information
  • Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, 153045, RussiaT. Yu. Kumeeva & N. P. Prorokova
References
  1. Aizenshtein, E.M., Tech. Textile, 2010, no. 23. http://www.rustm.net/catalog/article/1877.html. Cited March 13, 2019.
  2. Kharitonov, A.P., Prog. Org. Coat., 2008, vol. 61, nos. 2–4, pp. 192–204.
  3. Nazarov, V.G., Stolyarov, V.P., Baranov, V.A., and Evlampieva, L.A., Ross. Khim. Zh., 2008, vol. 52, no. 3, pp. 45–55.
  4. Kharitonov, A.P., J. Fluorine Chem., 2000, vol. 103, pp. 123–127.
  5. Friedrich, J., Vakuum Forsch. Praxis, 2002, vol. 14, no. 5, pp. 285–290.
  6. Jagur-Grodzinski, J., Progr. Polym. Sci., 1992, vol. 17, pp. 361–415.
  7. Prorokova, N.P., Istratkin, V.A., and Kharitonov, A.P., Dizain. Mater. Tekhnol., 2015, no. 5 (40), pp. 28–34.
  8. Summ, B.D. and Goryunov, Yu.V., Fiziko-khimicheskie osnovy smachivaniya i rastekaniya (Physicochemical Principles of Wetting and Spreading), Moscow: Khimiya, 1976.
  9. Esenkova, N.P., Mikhal’kova, A.I., and Bachernikova, S.G., Neft’ Gaz Prom-st., 2004, no. 3 (8), http://edinros.spb.ru/articles/3804. Cited March 13, 2019.
  10. Schonhorn, H., Macromolecules, 1970, vol. 3, pp. 800–801.
  11. Clark, D.T., Feast, W.J., Musgrave, W.K.R., and Ritchie, I., J. Polym. Sci., Part A: Polym. Chem., 1975, vol. 13, pp. 857–890.
  12. Tressaud, A., Durand, E., Labrugère, C., Kharitonov, A.P., and Kharitonova, L.N., J. Fluorine Chem., 2007, vol. 128, pp. 378–391.
  13. Prorokova, N.P., Istratkin, V.A., Kumeeva, T.Yu., Vavilova, S.Yu., Kharitonov, A.P., and Bouznik, V.M., RSC Adv., 2015, vol. 5, no. 55, pp. 44545–44549.
  14. Kharitonov, A.P., Taege, R., Ferrier, G., and Piven, N.P., Surf. Coat. Int., Part B: Coat. Trans., 2005, vol. 88, no. 3, pp. 201–212.
  15. Kharitonov, A.P., Moskvin, Y.L., and Kolpakov, G.A., Polym. Sci. USSR, 1985, vol. 27, no. 3, pp. 739–743.
  16. Deryagin, B.V., Churaev, N.V., and Muller, V.M., Poverkhnostnye sily (Surface Forces), Moscow: Nauka, 1985.
  17. Kumeeva, T.Yu., Prorokova, N.P., and Kichigina, G.A., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 4, pp. 579–586.
  18. Kumeeva, T.Yu. and Prorokova, N.P., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 2, pp. 346–351.
  19. Kumeeva, T.Yu., Prorokova, N.P., Kholodkov, I.V., Prorokov, V.N., Buyanovskaya, A.G., Kabaeva, N.M., Gumileva, L.V., Barakovskaya, I.G., and Takazova, R.U., Russ. J. Appl. Chem., 2012, vol. 85, no. 1, pp. 144–149.
  20. Boinovich, L.B. and Emelyanenko, A.M., Russ. Chem. Rev., 2008, vol. 77, no. 7, pp. 583–600.
  21. Boinovich, L.B. and Emelyanenko, A.M., Langmuir, 2009. vol. 25, pp. 2907–2912.
  22. Kosintsev, V.I., Bordunov, S.V., Pilepenko, V.G., Sechin, A.I., Kulikova, M.V., and Prokudin, I.A., Usp. Sovrem. Estestvozn., 2007, no. 8, pp. 84–86.