Статья
2018

Electrochemical Sensing of Uric Acid Using a ZnO/Graphene Nanocomposite Modified Graphite Screen Printed Electrode


Rasoul Rezaei Rasoul Rezaei , Mohammad Mehdi Foroughi Mohammad Mehdi Foroughi , Hadi Beitollahi Hadi Beitollahi , Reza Alizadeh Reza Alizadeh
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518130347
Abstract / Full Text

An electrochemical sensor has been fabricated using ZnO/GR nanocomposite for selective determination of uric acid (UA) in a phosphate buffer solution (PBS, pH 7.0). The electrochemical behaviour of UA at the ZnO/GR nanocomposite modified graphite screen printed electrodes (SPE) was studied by cyclic voltammetry and differential pulse voltammetry methods. The modified electrode exhibited remarkably anodic peak corresponding to the oxidation of uric acid over the concentration range of 1.0–100.0 μM with detection limit of 0.43 μM (S/N = 3). The fabricated sensor was further applied to the detection of uric acid in urine samples with good selectivity and high reproducibility.

Author information
  • Department of Chemistry, Faculty of Sciences, Islamic Azad University, Kerman Branch, Kerman, Iran

    Rasoul Rezaei & Mohammad Mehdi Foroughi

  • Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

    Hadi Beitollahi

  • Department of Chemistry, Faculty of Science, Qom University, Qom, Iran

    Reza Alizadeh

References
  1. Qu, F., Ma, X., Zhu, L., and Chen, F., Switchable electrode functionalized with an azobenzene-containing copolymer thin film using the Langmuir–Schaefer technique for a “smart” uric acid/air fuel cell, Electrochem. Commun., 2017, vol. 77, p. 49.
  2. Sheng, Y., Yang, H., Wang, Y., Han, L., Zhao, Y., and Fan, A., Silver nanoclusters-catalyzed luminol chemiluminescence for hydrogen peroxide and uric acid detection, Talanta, 2017, vol. 166, p. 268.
  3. Beitollahi, H., Mazloum Ardakani, M., Naeimi, H., and Ganjipour, B., Electrochemical characterization of 2,2'-[1,2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone-carbon nanotube paste electrode and its application to simultaneous voltammetric determination of ascorbic acid and uric acid, J. Solid State Electrochem., 2009. vol. 13, p. 353.
  4. Wang, C.Y., Huang, C.W., Wei, T.T., Wu, M.Y., and Lin, Y.W., Fluorescent detection of uric acid in biological samples through the inhibition of cobalt(II) catalyzed Amplex UltraRed, Sens. Actuators, B, 2017, vol. 244, p. 357.
  5. Mohammadi, S., Beitollahi, H., and Mohadesi, A., Electrochemical behaviour of a modified carbon nanotube paste electrode and its application for simultaneous determination of epinephrine, uric acid and folic acid, Sens. Lett., 2013, vol. 11, p. 388.
  6. Liu, Y., Li, H., Guo, B., Wei, L., Chen, B., and Zhang, Y., Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles, Biosens. Bioelectron., 2017, vol. 91, p. 734.
  7. Mazloum-Ardakani, M., Beitollahi, H., Ganjipour, B., and Naeimi, H., Novel carbon nanotube paste electrode for simultaneous determination of norepinephrine, Uric acid and D-penicillamine, Int. J. Electrochem. Sci., 2010, vol. 5, p. 531.
  8. Dey, M.K. and Satpati, A.K., Functionalised carbon nano spheres modified electrode for simultaneous determination of dopamine and uric acid, J. Electroanal. Chem., 2017, vol. 767, p. 95.
  9. Ferin, R., Pavao, M.L., and Baptista, J., Rapid, sensitive and simultaneous determination of ascorbic and uric acid in human plasma by ion-exclusion HPLC-UV, Clin. Biochem., 2013, vol. 46, p. 665.
  10. Lu, H.F., Li, J.Y., Zhang, M.M., Wu, D., and Zhang, Q.L., A highly selective and sensitive colorimetric uric acid biosensor based on Cu(II)-catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine, Sens. Actuators, B, 2017, vol. 244, p. 77.
  11. Sheng, Y., Yang, H., Wang, Y., Han, L., Zhao, Y., and Fan, A., Silver nanoclusters-catalyzed lutninol chemiluminescence for hydrogen peroxide and uric acid detection, Talanta, 2017, vol. 166, p. 268.
  12. Li, X.L., Li, G., Jiang, Y.Z., Kang, D., Jin, C.H., Shi, Q., Jin, T., Inoue, K., Todoroki, K., Toyooka, T., and Min, J.Z., Human nails metabolite analysis: A rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chroma-tography with UV-detection, J. Chromatogr. B, 2015, vol. 1002, p. 394.
  13. Gupta, V.K., Ganjali, M.R., Norouzi, P., Khani, H., Nayak, A., and Agarwal, S., Electrochemical analysis of some toxic metals and drugs by ion selective electrodes, Crit. Rev. Anal. Chem., 2011, vol. 41, p. 282.
  14. Gupta, V.K., Karimi-Maleh, H., and Roya Sadegh, R., Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor, J. Electrochem. Sci., 2015, vol. 10, p. 303.
  15. Beitollahi, H., Raoof, J.B., Karimi-Maleh, H., and Hosseinzadeh, R., Electrochemical behavior of isoproterenol in the presence of uric acid and folic acid at a carbon paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes, J. Solid State Electrochem., 2012, vol. 16, p. 1701.
  16. Gupta, V.K., Jain, S., and Khurana, U., A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II), Electroanalysis, 1997, vol. 9, p. 478.
  17. Prasad, R., Gupta, V.K., and Kumar, A., Metallotetraazaporphyrin based anion sensors: Regulation of sensor characteristics through central metal ion coordination, Anal. Chim. Acta, 2004, vol. 508, p. 61.
  18. Gupta, V.K., Jain, A.K., and Kumar, P., PVC-based membranes of N,N'-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor, Sens. Actuators, B, 2006, vol. 120, p. 259.
  19. Yu, H.W., Jiang, J.H., Zhang, Z., Wan, G.C., Liu, Z.Y., Chang, D., and Pan, H.Z., Preparation of quantum dots CdTe decorated graphene composite for sensitive detection of uric acid and dopamine, Anal. Biochem., 2017, vol. 519, p. 92.
  20. Gupta, V.K., Jain, A.K., Maheshwari, G., and Lang, H., Copper (II)-selective potentiometric sensor based on porphyrins in PVC matrix, Sens. Actuators, B, 2006, vol. 117, p. 99.
  21. Jain, A.K., Gupta, V.K., Radi, S., Singh, L.P., and Raisoni, J.R., A comparative study of Pb2+ sensors based on derivatized tetrapyrazole and calix[4]arene receptors, Electrochim. Acta, 2006, vol. 51, p. 2547.
  22. Gupta, V.K., Jain, A.K., Agarwal, P.K.S., and Maheshwari, G., Chromium(III)-selective sensor based on tri-othymotide in PVC matrix, Sens. Actuators, B, 2006, vol. 113, p. 182.
  23. Beitollahi, H., Raoof, J.B., and Hosseinzadeh, R., Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode, Anal. Sci., 2011, vol. 27, p. 991.
  24. Gupta, V.K., Singh, A.K., Mehtab, S., and Gupta, B.A., A Cobalt(II) selective PVC membrane based on a Schiff base complex of N,N-bis(salicylidene)-3,4-diaminotoluene, Anal. Chim. Acta, 2006, vol. 566, p. 5.
  25. Goyal, R.N., Gupta, V.K., and Bachheti, N., Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone, Anal. Chim. Acta, 2007, vol. 597, p. 82.
  26. Gupta, V.K., Jain S., and Chandra, S., Chemical Sensor for lanthanum(III) determination using aza crown as ionophore in poly (vinyl chloride) matrix, Anal. Chim. Acta, 2003, vol. 486, p. 199.
  27. Suprun, E.V., Zharkova, M.S., Veselovsky, A.V., Archakov, A.I., and Shumyantseva, V.V., Electrochemical oxidation of thrombin on carbon screen printed electrodes, Russ. J. Electrochem., 2017, vol. 53, p. 97.
  28. Beitollahi, H. and Garkani Nejad, F., Graphene Oxide/ZnO nanocomposite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode, Electroanalysis, 2016, vol. 28, p. 2237.
  29. Li, S., Zhang, Q., Lu, Y., Ji, D., Zhang, D., Wu, J., Chen, X., and Liu, Q., One step electrochemical deposition and reduction of graphene oxide on screen printed electrode for impedance detection of glucose, Sens. Actuators, B, 2017, vol. 244, p. 290.
  30. Tajik, S., Taher, M.A., and Beitollahi, H., Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline, Sens. Actuators, B, 2014, vol. 197, p. 228.
  31. Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K., and Vafaei, Z., Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II), J. Hazard. Mater., 2010, vol. 183, p. 402.
  32. Chekin, F., Bagheri, S., and Abd Hamid, S.B., Synthesis of graphene oxide nanosheet: A novel glucose sensor based on nickel-graphene oxide composite film, Russ. J. Electrochem., 2014, vol. 50, p. 1044.
  33. Goyal, R.N., Gupta, V.K., and Chatterjee, S., Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode, Sens. Actuators, B, 2010, vol. 149, p. 252.
  34. Beitollahi, H., Tajik, S., and Biparva, P., Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: Application to determination of sulfite and phenol in real samples, Measurement, 2014, vol. 56, p. 170.
  35. Galashev, A.E. and Zaikov, Y.P., Molecular dynamics study of Li+ migration through graphene membranes, Russ. J. Electrochem., 2015, vol. 51, p. 867.
  36. Beitollahi, H. and Salimi, H., A triple electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and grapheme, J. Electrochem. Soc., 2016, vol. 163, p. H1157.
  37. Mehta, J., Bhardwaj, N., Bhardwaj, S.K., Tuteja, S.K., Vinayak, P., Paul, A.K., Kim, K.H., and Deep, A., Graphene quantum dot modified screen printed immunosensor for the determination of parathion, Anal. Biochem., 2017, vol. 523, p. 1.
  38. Tajik, S., Taher, M.A., and Beitollahi, H., First report for electrochemical determination of levodopa and cabergoline: Application for determination of levodopa and cabergoline in human serum, urine and pharmaceutical formulations, Electroanalysis, 2014, vol. 26, p. 796.
  39. Yang, Y.J. and Li, W., CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of sunset yellow and tartrazine, Russ. J. Electrochem., 2015, vol. 51, p. 218.
  40. Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., A reversible fluorescence “off-on-off” sensor for sequential detection of aluminum and acetate/fluoride ions, Talanta, 2015, vol. 144, p. 80.
  41. Gupta, V.K., Singh, A.K., and Kumawat, L.K., Thiazole Schiff base turn-in fluorescent chemosensor for Al3+ ion, Sens. Actuators B, 2014, vol. 195, p. 98.
  42. Beitollahi, H. and Sheikhshoaie, I., Electrochemical behavior of carbon nanotube/Mn(III) salen doped carbon paste electrode and its application for sensitive determination of N-acetylcysteine in the presence of folic acid, Int. J. Electrochem. Sci., 2012, vol. 7, p. 7684.
  43. Gupta, V.K., Goyal, R.N., and Sharma, R.A., Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone based receptors: poly (vinyl chloride) based sensor for acetate, Talanta, 2008, vol. 76, p. 859.
  44. Srivastava, S.K., Gupta, V.K., and Jain, S., PVC-based 2,2,2-cryptand sensors for zinc ions, Anal. Chem., 1996, vol. 68, p. 1272.
  45. Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., Selective naked-eye detection of Magnesium(II) ions using a coumarin-derived fluorescent probe, Sens. Actuators, B, 2015, vol. 207, p. 216.
  46. Karimi-Maleh, H., Keyvanfard, M., Alizad, K., Fouladgar, M., Beitollahi, H., Mokhtari, A., and Gholami- Orimi, F., Voltammetric determination of N-actylcysteine using modified multiwall carbon nanotubes paste electrode, Int. J. Electrochem. Sci., 2011, vol. 6, p. 6141.
  47. Gupta, V.K., Gupta, V.K., Al Khayat, M., and Gupta, B., Neutral carriers based polymeric membrane electrodes for selective determination of mercury(II), Anal. Chim. Acta, 2007, vol. 590, p. 81.
  48. Jain, A.K., Gupta, V.K., Singh L.P., and Khurana, U., Macrocycle based Membrane Sensors for the determination of cobalt(II) ions, Analyst, 1997, vol. 122, p. 583.
  49. Gupta, V.K., Chandra, S., and Mangla, R., Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor, Electrochim. Acta, 2002, vol.47, p. 1579.
  50. He, P., Yang, K., Wang, W., Dong, F., Du, L., and Deng, Y., Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode, Russ. J. Electrochem., 2013, vol. 49, p. 359.
  51. Gupta, V.K., Prasad, R., Mangla, R., and Kumar, P., New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly (vinyl chloride) matrix, Anal. Chim. Acta, 2000, vol. 420, p. 19.
  52. Jain, R., Gupta, V.K., Jadon, N., and Radhapyari, K., Voltammetric determination of cefixime in pharmaceuticals and biological fluids, Anal. Biochem., 2010, vol. 407, p. 79.
  53. Gupta, V.K., Mangla, R., Khurana U., and Kumar, P., Determination of uranyl ions using poly (vinyl chloride) based 4-tert-butylcalix [6] arene membrane sensor, Electroanalysis, 1999, vol. 11, p. 573.
  54. Jaiswal, N., Tiwari, I., Foster, C.W., and Banks, C.E., Highly sensitive amperometric sensing of nitrite utilizing bulk-modified MnO2 decorated graphene oxide nanocomposite screen-printed electrodes, Electrochim. Acta, 2017, vol. 227, p. 255.
  55. Gupta, V.K., Sethi, B., Sharma, R.A., Agarwal, S., and Bharti, A., Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4] arene as a cationic receptor, J. Mol. Liq., 2013, vol. 177, p. 114.
  56. Jain, A.K., Gupta, V.K., Sahoo B.B., and Singh, L.P., Copper(II)-selective electrodes based on macrocyclic compounds, Anal. Proc. incl. Anal. Commun., 1995, vol. 32, p. 99.
  57. Gupta, V.K., Agarwal, S., and Singhal, B., A review on the recent advances on potentimetric membrane sensors for pharmaceutical analysis, Comb. Chem. High Throughput Screen, 2011, vol. 14, p. 284.
  58. Karimi-Maleh, H., Ensafi, A.A., Beitollahi, H., Khalilzadeh, M.A., and Biparva, P., Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: Application for determination of sulfite in real samples, Ionics, 2012, vol. 18, p. 687.
  59. Gupta, V.K., Jain, A.K., Agarwal, S., and Maheshwari, G., An iron(III) ion selective sensor based on a μ bis (tridentate) ligand, Talanta, 2007, vol. 71, p. 1964.
  60. Jain, A.K., Gupta, V.K., Khurana U., and Singh, L.P., A new membrane Sensor for UO2+, based on 2-Hydroxyacetophenoneoxime-thioureatrioxane resin, Electroanalysis, 1997, vol. 9, p. 857.
  61. Gupta, V.K., Pathania, D., Agarwal, S., and Sharma, S., Decolorization of hazardous dye from water system using chemical modified Ficus carica adsorbent, J. Mol. Liq., 2012, vol. 174, p. 86.
  62. Akhgar, M.R., Beitollahi, H., Salari, M., Karimi-Maleh, H., and Zamani, H., Fabrication of a sensor for simultaneous determination of norepinephrine, acetaminophen and tryptophan using a modified carbon nanotube paste electrode, Anal. Methods, 2012, vol. 4, p. 259.
  63. Gupta, V.K., Mittal, A., Malviya, A., and Mittal, J., Adsorption of Carmoisine A from wastewater using waste materials—Bottom Ash and De-Oiled Soya, J. Colloid Interface Sci., 2009, vol. 355, p. 24.
  64. Srivastava, S.K., Gupta, V.K., and Jain, S., Determination of lead using poly (vinyl chloride) based crown ether membrane, Analyst, 1995, vol. 120, p. 495.
  65. Gupta, V.K., Jain, A.K., and Maheshwari, G., Novel aluminum(III) selective potentiometric sensor based on morin in poly (vinyl chloride) matrix, Talanta, 2007, vol. 72, p. 1469.
  66. Miao, F. and Tao, B., Photovoltaic properties of oriented ZnO nanowires arrays decorated with TiO2 shell layer for dye-sensitized solar cell application, Russ. J. Electrochem., 2016, vol. 52, p. 533.
  67. Jiang, Y., Sun, R., Zhang, H.B., Min, P., Yang, D., and Yu, Z.Z., Graphene-coated ZnO tetrapod whiskers for thermally and electrically conductive epoxy composites, Composites, Part A, 2017, vol. 94, p. 104.
  68. Zhao, Y., Ma, J., Liu, J., and Bao, Y., Synthesis of fireworks-shaped ZnO/graphite-like carbon nanowires with enhanced visible-light photocatalytic activity and anti-photocorrosion, Colloids Surf., A, 2017, vol. 518, p. 57.
  69. Hummers, W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.
  70. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., N.Y.: Wiley, 2001.