Mechanism of Chromium Electrodeposition as a Particular Case of Mechanism of Induced Codeposition of Metals

V. L. KrasikovV. L. Krasikov, A. V. KrasikovA. V. Krasikov
Российский электрохимический журнал
Abstract / Full Text

The chromium reduction from standard worked-out chromium-plating electrolyte containing compounds of trivalent and hexavalent chromium and sulfuric acid is considered. It is shown that the reduction of Cr(III) ions with the formation of intermediate adsorbed Cr(II) species is the main electrochemical process. The intermediate species can be further electrochemically reduced to the metal or chemically interact with Cr(VI) species to form a cluster compound, which is stepwise reduced to the metal with a slow transfer of the first electron. Chromium reduction proceeds according to the mechanism of induced codeposition of metals proposed earlier.

Author information
  • Russian Institute of Radionavigation and Time, 192012, St. Petersburg, RussiaV. L. Krasikov
  • Central Research Institute of Structural Materials “Prometei” of National Research Center “Kurchatov Institute”, 191015, St. Petersburg, RussiaA. V. Krasikov
  1. Solodkova, L.N. and Kudryavtsev, V.N., Elektroliticheskoe khromirovanie (Electrolytic Chromium Plating), Moscow: Globus, 2007.
  2. Solov’eva, Z.A., Kondratov, Yu.V., and Vashchenko, S.V., Study of the electrochemical characteristics of the electrode in chromic acid electroreduction, Russ. J. Electrochem., 1994, vol. 30, p. 205.
  3. Matulis, Yu.V., Blestyashchie elektrokhimicheskie pokrytiya (Bright Electrolytic Coatings), Vilnius: Mintis, 1969.
  4. Efimov, E.A. and Tok, L.D., Kinetic parameters of electroreduction of chromic acid to metallic chromium, Russ. J. Electrochem., 1991. vol. 27, p. 103.
  5. Efimov, E.A., Mechanism of chromium electrodeposition from standard chromium–plating electrolytes, Russ. J. Electrochem., 1996, vol. 32, p. 716.
  6. Efimov, E.A., The mechanism of chromium electrodeposition from the standard chromium-plating electrolyte, Electroplating and Surface Treatment, 1992, nos. 1–2, p. 14.
  7. Aleksandrova, G.S., Burkat, G.K., Dolmatov, V.Yu., and Gmyzin, E.V., The electrodeposition of chromium in the presence of boron-doped detonation nanodiamonds in the standard chromium–plating electrolyte, Khim. Promyshl. 2016, vol. 43, no. 1, p. 15.
  8. Efimov, E.A., Tok, L.D., and Tverdynina, T.B., Mechanism of reduction of chromic acid anion to trivalent chromium ions, Elektrokhimiya, 1989, vol. 25, p. 1398.
  9. Protsenko, V.S., Kinetic regularities of chromium electrodeposition on the rotating disk electrode, Voprosy Khimii i Khim. Tekhnologii, 2012, no. 4, p. 174.
  10. Nguyen, Van, Phuong, Sik-Chol, Kwon, Joo-Yul, Lee, Junyoung, Shin, Bui, The, Huy, and Yong-Ill, Lee, Mechanistic study on the effect of PEG molecules in a trivalent chromium electrodeposition process, Microchemical J., 2011, vol. 99, p. 7.
  11. Krasikov, A.V. and Krasikov, V.L., Mechanism of nickel–tungsten alloy electrodeposition from pyrophosphate electrolyte, Izv. St. Petersburg State Institute of Technology (Technical University), 2016, no. 36 (62), p. 12.
  12. Krasikov, V.L. and Krasikov, A.V., Mechanism for induced codeposition of alloys and some single refractory metals, Izv. St. Petersburg State Institute of Technology (Technical University), 2016, no. 37 (63), p. 8.
  13. Podlaha, E.J. and Landolt, D., Induced codeposition. I. An experimental investigation of Ni–Mo alloys, J. Electrochem. Soc., 1996, vol. 143, p. 885.
  14. Podlaha, E.J. and Landolt D., Induced codeposition. II. A mathematical model describing the electrodeposition of Ni–Mo alloys, J. Electrochem. Soc., 1996, vol. 143, p. 893.
  15. Podlaha, E.J. and Landolt, D., Induced codeposition. III. Molybdenum alloys with nickel, cobalt and iron, J. Electrochem. Soc., 1997, vol. 144, p. 1672.
  16. Kuznetsov, V.V. and Matveev, D.V., Electrodeposition of chromium–molybdenum alloys from the electrolyte based on chromium(III) sulfate, Russ. J. Electrochem., 2008, vol. 44, p. 740.
  17. Kuznetsov, V.V., Pavlov, L.N., Vinokurov, E.G., Filatova, E.A., and Kudryavtsev, V.N., Electrodeposition of chromium–tungsten alloy from organo-aqueous solutions containing dimethyl formamide, Russ. J. Electrochem., 2015, vol. 51, p. 174.
  18. Fedorov, V.E., Mironov, Yu.V., Naumov, N.G., Sokolov, M.N., and Fedin, V.P., Chalcogenide clusters of group 5–7 metals, Russ. Chem. Reviews, 2007, vol. 76, p. 529.
  19. Krasikov, V.L. and Aleksandrova, G.S., Specific features of cathodic hydrogen evolution from weakly acidic solutions containing aluminum salt, Izv. St. Petersburg State Institute of Technology (Technical University), 2012, no. 17 (43), p. 31.