The Influence of TiC Particles on the Structure and Mechanical Properties of Ni3Al Manufactured By Spark Plasma Sintering

D. A. OsipovD. A. Osipov, I. V. SmirnovI. V. Smirnov, K. V. GrinyaevK. V. Grinyaev, I. A. DitenbergI. A. Ditenberg, M. A. KorchaginM. A. Korchagin
Российский физический журнал
Abstract / Full Text

Using precursors, prepared by a preliminary mechanical activation of the 3Ni–Al powder mixture in the energy-intensive ball mills with and without a subsequent addition of the TiC powder, Ni3Al and Ni3Al+TiC samples are consolidated by spark plasma sintering. By the methods of structure characterization and measurement of mechanical properties a comparative study of the influence of TiC is performed. After consolidation, no influence of the introduced particles on the intermetallic matrix structure parameters is found out. Under the synthesis conditions and during the subsequent high-temperature annealing, TiC does not interact with the intermetallic matrix. The presence of coarse-disperse TiC particles favors an additional embrittlement of the Ni3Al+TiC composite at room temperature, while at elevated temperatures a considerable increase in strength and plasticity is observed compared to pure Ni3Al. It is shown that an increase in the tension temperature gives rise to a change in the fracture mechanisms of the intermetallic matrix and coarsedisperse TiC particles.

Author information
  • National Research Tomsk State University, Tomsk, RussiaD. A. Osipov, I. V. Smirnov, K. V. Grinyaev & I. A. Ditenberg
  • Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaI. V. Smirnov, K. V. Grinyaev & I. A. Ditenberg
  • Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaM. A. Korchagin
  1. V. K. Sikka, S. C. Deevi, S. Viswanathan, et al., Intermetallics, 8, 1329 (2000).
  2. N. S. Stoloff, C. T. Liu, and S. C. Deevi, Intermetallics, 8, 1313 (2000).
  3. G. K. Dey, Sadhana, 28, 247 (2003).
  4. K. Bochenek and M. Basista, Prog. Aerospace Sci., 79, 136 (2015).
  5. J. R. Davis, Alloying: Understanding the Basics, ASM International (2001).
  6. C. L. Yeh and W. Y. Sung, J. Alloys Compounds, 384, 181 (2004).
  7. J. T. Guo, L. Y. Sheng, Y. Xie, et al., Intermetallics, 19, 137 (2011).
  8. N. Fragea, S. Kalabukhov, A. Wagner, and E. B. Zaretsky, Intermetallics, 102, 26 (2018).
  9. P. Cavaliere, Spark Plasma Sintering of Materials: Advances in Processing and Applications, Springer (2019).
  10. I. A. Ditenberg, M. A. Korchagin, V. V. Melnikov, et al., Russ. Phys. J., 61, No. 9, 1674 (2018).
  11. V. Zadorozhnyy, S. Kaloshkin, E. Kaevitser , and S. Romankov, J. Alloys Compounds, 509, 507 (2011).
  12. L. Lu, M. O. Lai, and S. Zhang, Mater. Design., 15, No. 2, 79 (1994).
  13. R. Yazdani-Rad, M. B. Rahaei, A. Kazemzadeh, and M. R. Hasanzadeh, Int. J. Eng., 25, 89 (2012).
  14. A. Thömmes, L. I. Shevtsova, V. I. Mali, et al., AIP Conf. Proc., 1683, No. 1, 020245 (2015).
  15. W. Liu and M. Naka, Scripta Mater., 48, 1225 (2003).