Electrochemical Properties of Nanocomposite Based on Polytriphenylamine Derivative and Single-Walled Carbon Nanotubes

L. I. Tkachenko L. I. Tkachenko , G. V. Nikolaeva G. V. Nikolaeva , A. G. Ryabenko A. G. Ryabenko , N. N. Dremova N. N. Dremova , I. K. Yakushchenko I. K. Yakushchenko , E. I. Yudanova E. I. Yudanova , O. N. Efimov O. N. Efimov
Российский электрохимический журнал
Abstract / Full Text

One-step synthesis of the stable dispersion of conjugated poly(4,4',4"-tris(N,N-diphenylamine) triphenylamine)—single-walled carbon nanotubes nanocomposite is carried out by the oxidative polymerization of the monomer of the triphenylamine derivative with a high density of free radicals of 4,4',4"- tris(N,N-diphenylamine)tripenylamine in the presence of the single-walled carbon nanotubes in concentrated formic acid. Benzoyl peroxide is used as an oxidant. Electroconductive film coatings are prepared by applying stable dispersion onto the Ni substrate. The coatings show a high specific electrochemical capacity and stability in long-term cycling in the aprotic 1 M LiClO4/propylene carbonate electrolyte.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    L. I. Tkachenko, G. V. Nikolaeva, A. G. Ryabenko, N. N. Dremova, I. K. Yakushchenko, E. I. Yudanova & O. N. Efimov

  1. Cheng, F.Y., Liang, J., Tao, Z.L., and Chen, J., Functional materials for rechargeable batteries, Adv. Mater., 2011, vol. 23, no. 15, p. 1695.
  2. Li, H., Wang, Z.X., Chen, L.Q., and Huang, X.J., Research on advanced materials for Li-ion batteries, Adv. Mater., 2009, vol. 21, no. 45, p. 4593.
  3. Song, Z. and Zhou, H., Towards sustainable and versatile energy storage devices: an overview of organic electrode materials, Energy Environ. Sci., 2013, vol. 6, p. 2280.
  4. Gajendran, P. and Saraswathi, R., Polyaniline–carbon nanotube composites, Pure Appl. Chem., 2008, vol. 80, no. 11, p. 2377.
  5. Suga, T., Ohshiro H., Sugita, S., Oyaizu, K., and Nishide, H., Emerging N Type redox active radical polymer for a totally organic polymer based rechargeable battery, Adv. Mater., 2009, vol. 21, N. 16, p. 1627.
  6. Oyaizu, K. and Nishide, H., Radical polymers for organic electronic devices: a radical departure from conjugated polymers?, Adv. Mater., 2009, vol. 21, no. 22, p. 2339.
  7. Creason, S.C., Wheeler, I., and Nelson, RF., Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ion, J. Org. Chem., 1972, vol. 37, p. 4440.
  8. Yurchenko, O., Freytag, D., Borg, L., et al., Electrochemically induced reversible and irreversible coupling of triarylamines, J. Phys. Chem., 2012, vol. 116, p. 30.
  9. Negru, O.I. and Grigoras, M., Polytriphenylamines synthesized by interfacial and microemulsion oxidative polymerization, Colloid Polym. Sci., 2014, vol. 292, p. 143.
  10. Yakushchenko, I.K., Kaplunov, M.G., Efimov, O.N., Belov, M.Yu., and Shamaev, S.N., Polytriphenylamine derivatives as materials for hole transporting layers in electroluminescent devices, Phys. Chem. Chem. Phys.1999, vol. 1, no. 8, p. 1783.
  11. Roberts, M.E., Wheeler, D.R., McKenzie, B.B., and Bunker, B.C., High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine), J. Mater. Chem., 2009, vol. 19, no. 38, p. 6977.
  12. Feng, J.K., Cao, Y.L., Ai, X.P., and Yang, H.X., Polytriphenylamine: A high power and high capacity cathode material for rechargeable lithium batteries, J. Power Sources, 2008, vol. 177, no. 1, p. 199.
  13. Su, C., Ye, Y., Xu, L., and Zhang, C., Synthesis and charge–discharge properties of a ferrocene-containing polytriphenylamine derivative as the cathode of a lithium ion battery, J. Mater. Chem., 2012, vol. 22, p. 22658.
  14. Luo, C., Huang, R., Kevorkyants, R., Pavanello, M., He, H., and Wang, C., Self-assembled organic nanowires for high power density lithium ion batteries, Nano Lett., 2014, vol. 14, p. 1596.
  15. Su, C., Yang, F.L., Ji L., Xu, L. H., and Zhang, C., Polytriphenylamine derivative with high free radical density as the novel organic cathode for lithium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 20083.
  16. Su, C., Ji, L.L., Xu, L.H., Zhou, N.N., Wang, G.S., and Zhang, C., A polytriphenylamine derivative exhibiting a four-electron redox center as a high free radical density organic cathode, RSC Advances, 2016, vol. 6, p. 22989.
  17. Su, C., He, H., Xu, L., Zhao, K., Zheng, C., and Zhang, C., A mesoporous conjugated polymer based on a high free radical density polytriphenylamine derivative:its preparation and electrochemical performance as a cathode material for Li-ion batteries, J. Mater. Chem. A. 2017, vol. 5, p. 2701.
  18. Yamamoto, T., Nishiyama, M., and Koie, Y., Palladium-Catalyzed Synthesis of Triarylamines from Aryl Halides and Diarylamines, Tetrahedron Lett., 1998, vol. 39, p. 2367.
  19. Krestinin, A.V., Dremova, N.N., Knerelman, E.I., et al., Characterization of SWCNT-containing products made in Russia and perspectives of their industrial applications (in Russian), Rossiiskie Nanotekhnologii, 2015, vol. 10, no. 7–8, p. 26.
  20. Zhou, Y.-k., He, B.-l., Zhou, W.-J., et al., Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites, Electrochim. Acta, 2004, vol. 49(2), p. 257.
  21. Tkachenko, L.I., Nikolaeva, G.V., Ryabenko, A.G., and Efimov, O.N., One-Step Synthesis of the Polyaniline–Single-Walled Carbon Tubes Nanocomposite in Formic Acid and Its Electrochemical Properties, Prot. Metals Phys. Chem. Surf., 2018, vol. 54, no. 3, p. 1.
  22. Pryor, W.A., Free Radicals, New York: Mcgraw-Hill, 1966.
  23. Frejdlina, R.X., Vasilieva, E.I., Chukovskaya, E.I., and Anglin, B.A., Collection. Progress of Polymer Chemistry (in Russian), Moscow: Khimiya, 1966, p. 144.
  24. Dan, A. and Sengupta, P.K., Synthesis and characterization of polyaniline prepared in formic acid medium, J. of Applied Polymer Science, 2004, vol. 91(2), p. 991.
  25. Yue, J., Epstein, A.J., Zhong, Z., Gallagher, P.K., and MacDiarmid, A.G., Thermal Stabilities of Polyanilines, Synthetic Metals, 1991, vol. 41, p. 765.
  26. Kvarnstrom, C., Petr, A., Damlin, P., Lindfors, T., Ivaska, A., and Dunsch, L., Raman and FTIR spectroscopic characterization of electrochemically synthesized poly(triphenylamine), PTPA, Solid State Electrochem., 2002, vol. 6(8), p. 505.
  27. Szeghalmi, A.V., Erdmann, M., Engel, V., Schmitt, M., and Amthor, S., How delocalized is N,N,N′,N'-Tetraphenylphenylenediamine Radical Cation? An Experimental and Theoretical Study on the Electronic and Molecular Structure, J. Am. Chem. Soc., 2004, vol. 126, no. 25, p. 7834.
  28. Zhou, M., Wang, K., Men, Z., Gao, S., Li, Z., and Sun, C., Determination of nonlinear absorption and refraction in direct and indirect band gap crystals by Z-scan method of aromatic hydrocarbons: Benzene, biphenyl and naphthalene, Spectrochim. Acta, Part A, 2012, vol. 97, p. 526.
  29. Kulikov, A.V., Komissarova, A.S., Ryabenko, A.G., Fokeeva, L.S., Shunina, I.G., and Belonogova, O.V., Effect of chain aggregation on the conductivity and ESR spectra of polyaniline, Russ. Chem. Bull., 2005, vol. 54, no. 12, p. 27–94.
  30. Konyushenko, E.N., Stejskal, J., and Trchova, M.A., Multiwall carbon nanotubes coated with polyaniline, Polymer, 2006, vol. 47, p. 5715.