Examples



mdbootstrap.com



 
Статья
2020

Thermodynamic Properties of a Hyperbranched Pyridine-Containing Polyphenylene in the Range of T → 0 to 650 K


N. N. SmirnovaN. N. Smirnova, A. V. MarkinA. V. Markin, S. S. SologubovS. S. Sologubov, E. S. SerkovaE. S. Serkova, N. V. KuchkinaN. V. Kuchkina, Z. B. ShifrinaZ. B. Shifrina
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420010318
Abstract / Full Text

The thermodynamic properties of amorphous hyperbranched pyridine-containing polyphenylene in the 6 to 650 K range of temperatures are studied for the first time via high-precision adiabatic vacuum calorimetry and differential scanning calorimetry. In the low-temperature range of 9 to 14 K, the polymer shows an anomalous change in heat capacity resembling the G transition in its shape. An exothermic effect is detected starting at T = 400 K, and is thought to be due to cross-linking in the studied sample. Standard thermodynamic functions of the polymer for the range of T → 0 to 400 K and the standard entropy of its formation at T = 298.15 K are calculated from the experimental data by means of classical thermodynamics.

Author information
  • Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod, RussiaN. N. Smirnova, A. V. Markin & S. S. Sologubov
  • Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, RussiaE. S. Serkova, N. V. Kuchkina & Z. B. Shifrina
References
  1. Hyperbranched Polymers: Synthesis, Properties, and Applications, Ed. by D. Yan, C. Gao, and H. Frey (Wiley, Hoboken, NJ, 2011).
  2. B. I. Voit and A. Lederer, Chem. Rev. 109, 5924 (2009).
  3. D. Konkolewicz, M. J. Monteiro, and S. Perrier, Macromolecules 44, 7067 (2011).
  4. G. R. Newkome and C. D. Shreiner, Polymer 49, 1 (2008).
  5. A. M. Muzafarov, N. G. Vasilenko, E. A. Tatarinova, G. M. Ignat’eva, V. M. Myakushev, M. A. Obrezkova, I. B. Meshkov, N. V. Voronina, and O. V. Novozhilov, Polymer Sci., Ser. C 53, 48 (2011).
  6. A. M. Muzafarov, E. A. Tatarinova, N. V. Vasilenko, et al., in Organosilicon Compounds: Experiment (Physico-Chemical Studies) and Applications, Ed. by V. Ya. Lee (Academic, Cambridge, MA, 2017), p. 323.
  7. X. Zheng, I. R. Oviedo, and L. J. Twyman, Macromolecules 41, 7776 (2008).
  8. N. Hu, J. Y. Yin, Q. Tang, et al., J. Polym. Sci., Part A 49, 3826 (2011).
  9. N. Baird, J. W. Dittmar, Y. B. Losovyj, et al., ACS Appl. Mater. Interfaces 9, 2285 (2017).
  10. W. Wu, R. Tang, Q. Li, et al., Chem. Soc. Rev. 44, 3997 (2015).
  11. H. Zhang, A. Patel, A. K. Gaharwar, et al., Biomacromolecules 14, 1299 (2013).
  12. R. Duncan and M. J. Vicent, Adv. Drug Deliv. Rev. 65, 60 (2013).
  13. S. Li, M. Omi, F. Cartieri, et al., Biomacromolecules 19, 3754 (2018).
  14. D. H. Wang, P. Mirau, B. Li, et al., Chem. Mater. 20, 1502 (2008).
  15. Y. Zheng, S. Li, Z. Weng, et al., Chem. Soc. Rev. 44, 4091 (2015).
  16. S. Ghiyasi, M. G. Sari, M. Shabanian, et al., Prog. Org. Coat. 120, 100 (2018).
  17. O. G. Zakharova, N. N. Smirnova, A. V. Markin, et al., Thermochim. Acta 468, 61 (2008).
  18. N. N. Smirnova, Yu. A. Zakharova, V. A. Ruchenin, and O. G. Zamyshlyayeva, Russ. J. Phys. Chem. A 86, 539 (2012).
  19. B. V. Lebedev, T. G. Kulagina, N. N. Smirnova, et al., J. Therm. Anal. Calorim. 74, 735 (2003).
  20. N. N. Smirnova, T. G. Kulagina, A. V. Markin, et al., Thermochim. Acta 425, 39 (2005).
  21. N. N. Smirnova, A. V. Markin, Yu. A. Zakharova, N. V. Kuchkina, A. L. Rusanov, and Z. B. Shifrina, Russ. Chem. Bull. 60, 132 (2011).
  22. N. N. Smirnova, Yu. A. Zakharova, A. V. Markin, N. V. Kuchkina, E. Yu. Yuzik-Klimova, and Z. B. Shifrina, Russ. Chem. Bull. 62, 2258 (2013).
  23. N. N. Smirnova, A. V. Markin, L. Ya. Tsvetkova, N. V. Kuchkina, E. Yu. Yuzik-Klimova and Z. B. Shifrina, Russ. J. Phys. Chem. A 90, 887 (2016).
  24. N. N. Smirnova, A. V. Markin, N. V. Kuchkina, E. Yu. Yuzik-Klimova, A. N. Shushunov and Z. B. Shifrina, Russ. J. Phys. Chem. A 90, 2321 (2016).
  25. N. N. Smirnova, Ya. S. Samosudova, A. V. Markin, et al., J. Chem. Thermodyn. 105, 443 (2017).
  26. N. V. Kuchkina, M. S. Zinatullina, E. S. Serkova, et al., RSC Adv. 5, 99510 (2015).
  27. N. V. Tsvetkov, A. S. Gubarev, E. V. Lebedeva, et al., Polym. Int. 66, 583 (2017).
  28. J. Meija, T. B. Coplen, M. Berglund, et al., Pure Appl. Chem. 88, 265 (2016).
  29. V. M. Malyshev, G. A. Mil’ner, E. L. Sorkin, et al., Prib. Tekh. Eksp., No. 6, 195 (1985).
  30. R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. 29, 623 (1997).
  31. R. Sabbah, A. Xu-wu, J. S. Chickos, et al., Thermochim. Acta 331, 93 (1999).
  32. G. W. H. Höhne, W. F. Hemminger, and H.-J. Flammersheim, Differential Scanning Calorimetry (Springer, Berlin, Heidelberg, 2003).
  33. V. A. Drebushchak, J. Therm. Anal. Calorim. 79, 213 (2005).
  34. B. Wunderlich and H. Bauer, Heat Capacities of Linear Polymers (Springer, Berlin, 1970).
  35. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
  36. W. Kauzmann, Chem. Rev. 43, 219 (1948).
  37. A. B. Bestul and S. S. Chang, J. Chem. Phys. 40, 3731 (1964).
  38. V. B. Lazarev, A. D. Izotov, K. S. Gavrichev, et al., Thermochim. Acta 269–270, 109 (1995).
  39. O. V. Shebershneva, A. D. Izotov, K. S. Gavrichev, and V. B. Lazarev, Inorg. Mater. 32, 28 (1996).
  40. P. Debye, Ann. Phys. (N.Y.) 344, 789 (1912).
  41. Experimental Thermodynamics, Vol. 1: Calorimetry of Non-Reacting Systems, Ed. by J. P. McCullough and D. W. Scott (Butterworth, London, 1968).
  42. M. W. Chase, Jr., J. Phys. Chem. Ref. Data, Monograph 1–2 (9), 1 (1998).