Examples



mdbootstrap.com



 
Статья
2019

Zinc Oxidation in Limited Volume of Alkaline Electrolyte


A. N. MoskvichevA. N. Moskvichev, Yu. L. GunkoYu. L. Gunko, M. G. MikhalenkoM. G. Mikhalenko, A. A. SletovA. A. Sletov, V. A. KozyrinV. A. Kozyrin, O. L. KozinaO. L. Kozina
Российский электрохимический журнал
https://doi.org/10.1134/S102319351903008X
Abstract / Full Text

Studies of zinc electrode oxidation under the conditions of limited volume of alkaline electrolyte are carried out. It is shown, that at anodic polarization below 7–8 mV the zinc surface is covered by phase layer of zinc oxides and hydroxides. The last ones hinder diffusion of ions participating in electrochemical reactions. Then, formation of zincate complex [\(\rm{Zn}(OH)\begin{array}{c}2-\\ 4\end{array}\)] starts, with the slow diffusion stage of hydroxide ions to the anode surface. At polarization from 0.08 to 0.12 V formation of supersaturated zincate electrolyte occurs, and its decomposition with formation of the loose zinc oxide layer. At polarization above 0.12 V, nonporous oxide film is formed on zinc surface; zinc oxidation process proceeds by solid-phase mechanism.

Author information
  • Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, 603024, RussiaA. N. Moskvichev
  • Nizhny Novgorod, Institute of Physical and Chemical Technologies and Material Science, Alekseev State Technical University, Nizhny Novgorod, 603950, RussiaYu. L. Gunko, M. G. Mikhalenko, A. A. Sletov, V. A. Kozyrin & O. L. Kozina
References
  1. Edison, T.A., Reversible galvanic battery, Patent US 684204 A (U.S.A.), 1901.
  2. Drumm, J.J., Storage battery, Patent US 1955115 A (U.S.A.), 1934.
  3. Acmepower. URL: https://doi.org/acmepower.ru/.
  4. Shenzhen BetterPower Battery Co., LTD. URL: https://doi.org/en.betterpower.com.cn/.
  5. VARTA Microbattery — Website. URL: https://doi.org/www.varta-microbattery.com/en.html.
  6. PowerGenix Batteries — Cleaner, More Powerful Batteries. URL: https://doi.org/powergenix.com/.
  7. Korovin, N.V. and Skundin, A.M., Chemical Power Sources (in Russian), Moscow: Izd. Mos. Energ. Inst., 2003.
  8. Farr, G.P.G. and Hampson, M.A., Evolution of characteristics of exchange reactions. 1. Exchange reactions at a solid zinc electrode in alkaline, J. Electroanal. Chem., 1967, vol. 13, no. 4, p. 433–441.
  9. Chang, Y.-C., A kinetic model for the anodic dissolution of zinc in alkaline electrolyte with sodium metasilicate additions, Electrochim. Acta, 1996, vol. 41, p. 2425.
  10. Elkind, K.M., Mikhalenko, M.G., and Flerov, V.N., About mechanism of anodic zinc dissolution in concentrated solutions KOH, Izvestiya Visshikh Uchebnikh Zavedenij USSR. Ser. Khim. khim. tekhnol. (in Russian), 1978, vol. 21, no. 6, p. 849–851.
  11. Van Doopne, W. and Dirkse, T.P., Supersaturated Zincate Solutions, J. Electrochem. Soc., 1975, vol. 122, no. 1, p. 1–4.
  12. Vozdvizhenskii, G.F. and Kochman, E.D., Voltammetric research of anodic dissolution and zinc passivation in alkaline solutions, Zhur. Fiz. Khim., 1965, vol. 39, no. 3, p. 657–663 (in Russian).
  13. Khalafalla, S.E., Shams El.-Din, A.M., and El-Tantawy, J.K., Study anodic and catodic polarization zinc amalgam, J. Phys. Chem., 1959, vol. 63, no. 8, p. 1252–1255.
  14. Huber, K., Anodic formation of coating a magnesium zinc and cadmium, J. Electrochem. Soc., 1953, vol. 100, p. 376–382.
  15. Dirkse, T.P., A comparison of amalgamated and nonamalgamated zinc electrodes, Power Sources Z. — Oxford, 1970, p. 411–421.
  16. Nikitina, Z.Y., Zinc electrode passivation in galvanic elements with alkaline electrolyte, J. Applied Chem. USSR, 1958, vol. 31, no. 2, p. 218–226 (in Russian).
  17. Powers, R.W. and Breiter, M.W., The anodic dissolution and passivation Zn in concentrated solution KOH, J. Electrochem. Soc., 1969, vol. 116, no. 6, p. 719–729.
  18. Levin, A.I., Prostakov, G.D., and Susloparov M.E., Research of passivating layers on zinc by radiographic method, Dokl. Akad. Nauk USSR (in Russian), 1959, vol. 129, no. 3, p. 617–625.
  19. Huber, K., The structure of passivating layers, Z. Elektrochem., 1958, vol. 62, p. 675–683.
  20. Powers, R.W., Anodic films on zinc and the formation of cobuebs, J. Electrochem. Soc., 1969, vol. 116, no. 12, p. 1652–1659.
  21. Oshe, E.K. and Rozenfeld, I.A., New research method of surface oxides on metals in solutions, Soviet Electrochem., 1968, vol. 4, no. 10, p. 1200–1206.
  22. Mokaddem, M., Volovitch, P., and Ogle, K., The anodic dissolution of zinc and zinc alloys in alkaline solution. I. Oxide formation on electrogalvanized steel, Electrochim. Acta, 2010, vol. 55, p. 7867.
  23. Ko, Yo. and Park., S.-M., Zinc Oxidation in Dilute Alkaline Solutions Studied by Real-Time Electrochemical Impedance Spectroscopy, J. Phys. Chem. C, 2012, vol. 116, no. 13, p. 7260–7268.
  24. Gunko, Y.L., Shishov, V.I., Mikhalenko, M.G., and Flerov, V.N., About features of anodic zinc oxidation in alkaline solutions at intensive process modes, J. Appl. Chem. USSR, 1986, no. 1, p. 196–198 (in Russian).
  25. Afanasiev, A.V., Moskvichev, A.N., Moskvichev, A.A., Odnosevtsev, V.A., and Orlov, B.Ya., Low-frequency complex of impedance measurment of conducting medium characteristics, Vestnik Nizhegorod. Univ., 2008, no. 3, p. 60–64.
  26. Moskvichev, A.N. and Moskvichev, A.A., Research of properties and kinetics of anaerobic sealants polymerization by impedance measurement method, Izv. Vissh. Uchebn. Zaved. Ser. Khim. Khim. Tekhnol. (in Russian), no. 3, 2007, p. 69–72.
  27. Vetter, K., Elektrochemische Kinetik, Berlin: Springer, 1961.
  28. Zakharov, M.S., Bakanov, V.I., and Pnev, V.V., Chronopotentiometry (in Russian), Moscow: Khimia, 1978.
  29. Arkhangelskaya, Z.P., Mashevich, M.N., and Andreeva, G.G., Features of secondary process course at zinc electrodes polarization with solid and porous active mass in alkaline electrolyte, J. App. Chem. USSR, 1970, vol. 43, no. 6, p. 1248–1255.
  30. Damaskin, B.B. and Petrii, O.A., Introduction to electrochemical kinetics (in Russian), Moscow: Vysshaya Shkola, 1975.
  31. Croft, G.T. and Tuomi, D., A model for electrochemical reaction kinetic of solid-state phase transformations in reversible, J. Electrochem. Soc., 1961, vol. 108, no. 10, p. 915–922.
  32. Chebotin, V.N. and Perfilev, M.V., Electrochemistry of solid electrolytes (in Russian), Moscow: Khimiya, 1978.
  33. Boltaks, B.I., Diffusion in Semiconductors (in Russian), Moscow: Fizmatgiz, 1961.
  34. Popova, T.I., Simonova, N.A., and Kabanov, B.N., Anodic dissolution of passive zinc in zincate alkaline solutions, Soviet Electrochem., 1967, vol. 3, no. 12, p. 1419–1426.
  35. Baraboshkin, A.N. and Saltykova, N.A., Electrochemistry of salt and solid electrolyte melts, Trudy inst. Elektrokhim., Uralskiy filial Akad. Nauk USSR (in Russian), 1962, no. 3, p. 44–49.
  36. Mikhalenko, M.G. and Flerov, V.N., Electrochemical determination of zincate diffusion rate through hydratecellulose separation, Soviet Electrochem., 1972, vol. 8, no. 1, p. 81–83.
  37. Usano, T. and Charito, K., Passivation zinc in alkaline electrolyte, J. Metall. Finish. Soc. Japan, 1970, vol. 21, no. 2, p. 60–67.
  38. Popova, T.I., Vidovich, G.A., Simonova, N.A., and Kabanov, B.N., Anodic dissolution of deep passivated zinc in alkaline supersaturated zincate solutions, Soviet Electrochem., 1967, vol. 3, no. 8, p. 970–973.
  39. Landsberg, H., Zum anodischen Verhalten der Zinks in Natronlaude, Z. Phys. Chem., 1957, vol. 200, no. 3/4, p. 291–298.
  40. Bakaev, V.V. and Flerov, V.N., About formation of passive layer on transpassive zinc anodes in zincate solutions, Soviet Electrochem., 1972, vol. 8, no. 9, p. 1315–1319.