Статья
2018

Oxygen Nonstoichiometry and Transport Properties of Mixed-Conducting Ce0.6–xLa0.4Pr x O2–δ


A. I. Ivanov A. I. Ivanov , V. A. Kolotygin V. A. Kolotygin , M. V. Patrakeev M. V. Patrakeev , A. A. Markov A. A. Markov , S. I. Bredikhin S. I. Bredikhin , V. V. Kharton V. V. Kharton
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518060058
Abstract / Full Text

The oxygen nonstoichiometry and electrical conductivity of fluorite-type solid solutions Ce0.6‒xLa0.4Pr x O2–δ (x = 0.1–0.2) were studied in the oxygen partial pressure range 10–19–0.35 atm at 1023–1223 K. It was confirmed that the Pr4+/3+ and Ce4+/3+ redox pairs, which determine the concentration of p- and n-type electron charge carriers, play the dominant roles under oxidizing and reducing conditions, respectively. The conductivity vs. charge carrier concentration dependencies in these conditions are almost linear. Increasing praseodymium content leads to a substantially higher hole conductivity and an expanded range of the oxygen nonstoichiometry variations at high oxygen partial pressures. Under reducing conditions when praseodymium cations become trivalent opposite trends are observed on doping.

Author information
  • Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    A. I. Ivanov, V. A. Kolotygin, S. I. Bredikhin & V. V. Kharton

  • Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620990, Russia

    M. V. Patrakeev & A. A. Markov

References
  1. Kharton, V.V., Figueiredo, F.M., Navarro, L., Naumovich, E.N., Kovalevsky, A.V., Yaremchenko, A.A., Viskup, A.P., Carneiro, A., Marques, F.M.B., and Frade, J.R., Ceria-based materials for solid oxide fuel cells, J. Mater. Sci., 2001, vol. 36, p. 1105.
  2. Trovarelli, A., Catalytic properties of ceria and CeO2-containing materials, Catal. Rev., 2006, vol. 38, p. 439.
  3. Mogensen, M., Sammes, N.M., and Tompsett, G.A., Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, 2000, vol. 129, p. 63.
  4. Elyassi, B., Rajabbeigi, N., Khodadadi, A., Mohajerzadeh, S.S., and Sahimi, M., An yttria-doped ceriabased oxygen sensor with solid-state reference, Sens. Actuators, B, 2004, vol. 103, p. 178.
  5. Bernal, S., Blanco, G., Cauqui, M.A., Corchado, M.P., Larese, C., Pintado, J.M., and Rodriguez-Izquierdo, J.M., Cerium–terbium mixed oxides as alternative components for three-way catalysts: a comparative study of Pt/CeTbOx and Pt/CeO2 model systems, Catal. Today, 1999, vol. 53, p. 607.
  6. Zhao, S. and Gorte, R.J., A comparison of ceria and Sm-doped ceria for hydrocarbon oxidation reactions, Appl. Catal. A, 2004, vol. 277, p 129.
  7. Shuk, P. and Greenblatt, M., Hydrothermal synthesis and properties of mixed conductors based on Ce1‒xPrxO2 †δ solid solutions, Solid State Ionics, 1999, vol. 116, p. 217.
  8. Ramasamy, D., Shaula, A.L., Gómez-Herrero, A., Kharton, V.V., and Fagg, D.P., Oxygen permeability of mixed-conducting Ce0.8Tb0.2O2 †δ membranes: Effects of ceramic microstructure and sintering temperature, J. Membr. Sci., 2015, vol. 475, p. 414.
  9. Fagg, D.P., Kharton, V.V., Shaula, A., Marozau, I.P., and Frade, J.R., Mixed conductivity, thermal expansion, and oxygen permeability of Ce(Pr,Zr)O2 †δ, Solid State Ionics, 2005, vol. 176, p. 1723.
  10. Fagg, D.P., Marozau, I.P., Shaula, A.L., Kharton, V.V., and Frade, J.R., Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8 †xPr0.2O2 †δ, x = 0, 0.15, 0.2, J. Solid State Chem., 2006, vol. 179, p. 3347.
  11. Chatzichristodoulou, C. and Hendriksen, P.V., Oxygen nonstoichiometry and defect chemistry modeling of Ce0.8Pr0.2O2 †δ, J. Electrochem. Soc., 2010, vol. 157, p. B481.
  12. Bishop, S.R., Stefanik, T.S, and Tuller, H.L., Defects and transport in PrxCe1 †xO2 †δ: Composition trends, J. Mater. Res., 2012, vol. 27, p. 2009.
  13. Bishop, S.R., Stefanik, T.S, and Tuller H.L., Electrical conductivity and defect equilibria of Pr0.1Ce0.9O2 †δ, Phys. Chem. Chem. Phys., 2011. vol. 13, p. 10165.
  14. Fagg, D.P., Frade, J.R., Kharton, V.V., and Marozau, I.P., The defect chemistry of Ce(Pr, Zr)O2 †δ, J. Solid State Chem., 2006, vol. 179, p. 1469.
  15. Kharton, V.V., Viskup, A.P., Figueiredo, F.M., Naumovich, E.N., Yaremchenko, A.A., and Marques, F.M.B., Electron–hole conduction in Pr-doped Ce(Gd)O2 †δ by faradaic efficiency and emf measurements, Electrochim. Acta., 2001, vol. 46, p. 2879.
  16. Schmale, K., Grünebaum, M., Janssen, M., Baumann, S., Schulze-Küppers, F., and Wiemhöfer, H.-D., Electronic conductivity of Ce0.8Gd0.2 †xPrxO2 †δ and influence of added CoO, Phys. Status Solidi B, 2011, vol. 248, p. 314.
  17. Ivanov, A.I., Zagitova, A.A., Bredikhin, S.I., and Kharton, V.V., Sintez i smeshannaya provodimost’ Ce1‒x †yLaxPryO2 †δ dlya kataliticheski aktivnykh zashchitnykh podsloev tverdookisnykh toplivnykh elementov, Al’tern. Energ. Ekol., 2013, no. 20 (160), p. 15.
  18. Bishop, S.R., Duncan, K.L., and Wachsman, E.D., Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide, Electrochim. Acta, 2009, vol. 54, p. 1436.
  19. Shoko, E., Smith, M.F., and McKenzie, R.H., Charge distribution and transport properties in reduced ceria phases: A review, J. Phys. Chem. Solids, 2011, vol. 72, p. 1482.
  20. Otake, T., Yugami, H., Yashiro, K., Nigara, Y., Kawada, T., and Mizusaki, J., Nonstoichiometry of Ce1 †xYxO2 †0.52 †δ (x = 0.1, 0.2), Solid State Ionics, 2003, vol. 161, p. 181.
  21. Naik, I.K. and Tien, T.Y., Small-polaron mobility in nonstoichiometric cerium dioxide, J. Phys. Chem. Solids, 1978, vol. 39, p. 311.
  22. Tuller, H.L. and Nowick, A.S., Small polaron electron transport in reduced CeO2 single crystals, J. Phys. Chem. Solids, 1978, vol. 38, p. 859.
  23. Wei-Ping, G., Rui, Z., and Zhong-Sheng, C., Thermodynamic modelling and applications of Ce−La−O phase diagram, Trans. Nonferrous Met. Soc. China, 2011, vol. 21, p. 2671.
  24. Wan, J., Goodenough, J.B., and Zhu, J.H., Nd2‒xLaxNiO4 + δ, a mixed ionic/electronic conductor with interstitial oxygen, as a cathode material, Solid State Ionics, 2007, vol. 178, p. 281.
  25. Huang, K., Wan, J.-H., and Goodenough, J.B., Increasing power density of LSGM-based solid oxide fuel cells using new anode materials, J. Electrochem. Soc., 2001, vol. 148, p. A788.
  26. Wan, J.-H., Yan, J.-Q., and Goodenough, J.B., LSGM-based solid oxide fuel cell with 1.4 W/cm2 power density and 30 day long-term stability, J. Electrochem. Soc., 2005, vol. 152, p. A1511.
  27. Kuritsyna, I., Sinitsyn, V., Melnikov, A., Fedotov, Yu., Tsipis, E., Viskup, A., Bredikhin, S., and Kharton, V., Oxygen exchange, thermochemical expansion and cathodic behavior of perovskite-like Sr0.7Ce0.3MnO3 †δ, Solid State Ionics, 2014, vol. 262, p. 349.
  28. Kuritsyna, I.E., Sinitsyn, V.V., Fedotov, Yu.S., Bredikhin, S.I., Tsipis, E.V., and Kharton, V.V., Stability and functional properties of Sr0.7Ce0.3MnO3 †δ as cathode material for solid oxide fuel cells, Russ. J. Electrochem., 2014, V. 50, p. 713.
  29. Patrakeev, M.V., Leonidov, I.A., and Kozhevnikov, V.L., Applications of coulometric titration for studies of oxygen non-stoichiometry in oxides, J. Solid State Electrochem., 2011, vol. 15, p. 931.
  30. Patrakeev, M.V., Mitberg, E.B., Lakhtin, A.A., Leonidov, I.A., Kozhevnikov, V.L., Kharton, V.V., Avdeev, M., and Marques, F.M.B., Oxygen nonstoichiometry, conductivity, and Seebeck coefficient of La0.3Sr0.7Fe1‒xGaxO2.65 + δ perovskites, J. Solid State Chem., 2002, vol. 167, p. 203.
  31. Kharton, V.V. and Marques, F.M.B., Interfacial effects in electrochemical cells for oxygen ionic conduction measurements I. The e.m.f. method, Solid State Ionics, 2001, vol. 140, p. 381.
  32. Sato, H., Hashimoto, S., Nakamura, T., Yashiro, K., Amezawa, K., and Kawada, T., Oxygen nonstoichiometry of Ce0.6La0.4O2 †δ, ECS Trans., 2013, vol. 57, p. 1125.