Examples



mdbootstrap.com



 
Статья
2020

Preparation and Structural and Electrochemical Characteristics of a Carbon-Containing Material Based on Aspen Bark Modified with Zinc and Iron Chlorides


S. I. TsyganovaS. I. Tsyganova, A. S. RomanchenkoA. S. Romanchenko, O. Yu. FetisovaO. Yu. Fetisova, G. N. BondarenkoG. N. Bondarenko, G. P. SkvortsovaG. P. Skvortsova, I. V. Korol’kovaI. V. Korol’kova, O. P. TaranO. P. Taran
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220050079
Abstract / Full Text

The possibility of using aspen bark modified with zinc and iron chlorides for preparing highly porous materials with specific properties was examined. The effect of the treatment temperature and modifiers on the structural and electrochemical parameters of the carbon-containing product was revealed. Carbonization of aspen bark modified with ZnCl2 yielded a material with the specific surface area of up to 1350 m2 g–1, containing a crystalline zinc oxide phase. The material obtained using a mixture of aspen bark with FеCl3 had the specific surface area of up to 300 m2 g–1 and contained magnetite and maghemite. Modification of the bark with zinc and iron chlorides simultaneously yielded a highly porous product with ferromagnetic properties. The apparent capacitance of the samples carbonized at 800°С was found to be 150–400 F g–1. The possibility of using these materials in electrochemical devices was suggested.

Author information
  • Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, RussiaS. I. Tsyganova, A. S. Romanchenko, O. Yu. Fetisova, G. N. Bondarenko, G. P. Skvortsova, I. V. Korol’kova & O. P. Taran
References
  1. Soboleva, S.V., Chentsova, L.I., and Voronin, V.M., Pererabotka kory osiny s polucheniem biologicheski aktivnykh veshchestv i kormovykh produktov: monografiya (Processing of Aspen Bark with Preparation of Biologically Active Compounds and Forage Products: Monograph), Krasnoyarsk: Sib. Gos. Tekh. Univ., 2013.
  2. Kharouk, V.I., Middleton, E.M., Spencer, S.L., Rock, B.N., and Williams, D.L., Water,Air Soil Pollut., 1995, vol. 82, pp. 483–497.
  3. Pasztory, Z., Mohacsine, I.R., Gorbacheva, G., and Borcsok, Z., Bioresources, 2016, vol. 11, no. 3, pp. 7859–7888.
  4. Soboleva, S.V. and Litovka, Yu.A., Khim. Rast. Syr’ya, 2011, vol. 2, pp. 83–86.
  5. Marsh, H. and Rodriguez-Reinoso, F., Activated Carbon, Elsevier, 2006, pp. 3–536.
  6. Tsyganova, S.I., Romanchenko, A.S., Fetisova, O.Yu., Mazurova, E.V., and Bondarenko, G.N., Zh. Sib. Fed. Univ., Khimiya, 2018, vol. 2, no. 11, pp. 281–290. https://doi.org/10.17516/1998-2836-0075
  7. Tsyganova, S.I., J. Wood Sci. Technol., 2013, vol. 47, pp. 77–82. https://doi.org/10.1007/s00226-012-0490-y
  8. Swarnalatha, S., Kumar, A.G., and Sekaran, G., J. Porous Mater., 2009, vol. 16, pp. 239–245. https://doi.org/10.1007/s10934-008-9192-0
  9. Xu, C. and Strømme, M., Nanomaterials, 2019, vol. 9, no. 1:103, pp. 1–13. https://doi.org/10.3390/nano9010103
  10. Peng, X., Zhang, L., Chen, Z., Zhong, L., Zhao, D., Chi, X., Zhao, X., Li, L., Lu, L., Leng, K., Liu, C., Liu, W., Tang, W., and Loh, K.P., Adv. Mater., 2019, vol. 31, pp. 1–7. https://doi.org/10.1002/adma.201900341
  11. Zhang, J. and Zhang, W., Mater. Sci.(Medziagotyra), 2014, vol. 20, no. 4, pp. 474–478. https://doi.org/10.5755/j01.ms.20.4.6400
  12. Mikova, N.M., Fetisova, O.Yu., Ivanov, I.P., Pavlenko, N.M., and Chesnokov, N.V., Khim. Rast. Syr’ya, 2017, vol. 4, pp. 53–64. https://doi.org/10.14258/jcprm.2017042018
  13. Tsyganova, S.I., Romanchenko, A.S., Bondarenko, G.N., and Fetisova, O.Yu., Russ. J. Appl. Chem., 2018, vol. 91, no. 2, pp. 330−336. https://doi.org/10.1134/S1070427218020258
  14. Erabee, I.K., Ahsan, A., Zularisam, A.W., Idrus, S., Daud, N.N.N., Arunkumar, T., Sathyamurthy, R., and Al-Rawajfeh, A.E., Eng. J., 2017, vol. 21, no. 5, pp. 1−15. https://doi.org/10.4186/ej.2017.21.5.1
  15. Mohapatra, D., Parida, S., Badrayyana, S., and Singh, B.K., Appl. Mater. Today, 2017, vol. 7, pp. 212–221. https://doi.org/10.1016/j.apmt.2017.03.006
  16. Wang, H., Yu, S., and Xu, B., Chem. Commun., 2016, vol. 52, no. 77, pp. 11512−11515. https://doi.org/10.1039/C6CC05911B
  17. Guetteche, Y., Bordjiba, T., Bouguerne, B., Nabeti, Z., Mahmoudi, O., and Lemzademi, A., Int. J.Electrochem. Sci., 2017, vol. 12, pp. 1874–1884. https://doi.org/10.20964/2017.03.37
  18. Borgohain, R., Li, J., Selegue, J.P., and Cheng, Y.-T., J. Phys. Chem. C, 2012, pp. 15068−15075. https://doi.org/10.1021/jp301642s
  19. Banerjee, A., Gokhale, R., Bhatnagar, S., Jog, J., Bhardwaj, M., and Lefez, B., J. Mater. Chem., 2012, vol. 22, pp. 19694−9699. https://doi.org/10.1039/C2JM33798C
  20. Reiner, T., Jantke, D., Marziale, A.N., Raba, A., and Eppinger, J., Chem. Open, 2013, vol. 2, pp. 50−54. https://doi.org/10.1002/open.201200044
  21. Zhi, M., Xiang, C., Li, J., Li, M., and Wu, N., Nanoscale, 2013, vol. 5, pp. 72−88. https://doi.org/10.1039/C2NR32040A
  22. Zhang, R.D.J., Li, J.Q.Z., Wang, C., and Chen, M., ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 16, pp. 13470–13478. https://doi.org/10.1021/acsami.8b00353
  23. Raghu, M., Nanostructured Arrays for Sensing and Energy Storage Applications, Doctoral Dissertation, Univ. of Kentucky, 2011. pp. 1–153.
  24. Pandey, K.K., J. Appl. Polym. Sci., 1999, vol. 71, pp. 1969–1975. https://doi.org/10.1002/(SICI)1097-4628(19990321)71:12>1969::AID-APP6<3.0.CO;2-D
  25. Tsyganova, S.I., Patrushev, V.V., Bondarenko, G.N., and Velikanov, A.M., Zh. Sib. Fed. Univ., Khimiya, 2011, vol. 4, no. 4, pp. 388−398.
  26. Lufrano, F. and Staiti, P., Int. J. Electrochem. Sci., 2010, vol. 5, pp. 903–916.