Examples



mdbootstrap.com



 
Статья
2017

Electrode materials for solid oxide fuel cells with proton-conducting electrolyte based on CaZrO3


L. A. DunyushkinaL. A. Dunyushkina, A. V. Kuz’minA. V. Kuz’min, V. M. KuimovV. M. Kuimov, A. Sh. KhaliullinaA. Sh. Khaliullina, M. S. PlekhanovM. S. Plekhanov, N. M. BogdanovichN. M. Bogdanovich
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516110045
Abstract / Full Text

The work studies chemical stability and thermal compatibility of composite electrodes in contact with proton electrolyte based on calcium zirconate. Composite of electrolytes of CaZr0.95Sc0.05O3–δ and CaZr0.9Y0.1O3–δ with Fe, Ni, Cu, and Pd metals and also with the perovskite oxide of SrTi0.8Fe0.2O3–δ are considered. Temperature dependences of resistance of porous electrodes made of these materials are studied.

Author information
  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620990, RussiaL. A. Dunyushkina, A. V. Kuz’min, V. M. Kuimov, A. Sh. Khaliullina, M. S. Plekhanov & N. M. Bogdanovich
  • Ural Federal University Named after the First President of Russia B.N. Eltsin, Yekaterinburg, 620002, RussiaA. V. Kuz’min
References
  1. Demin, A.K., Tsiakaras, P.E., Sobyanin, V.A., and Hramova, S.Y., Solid State Ionics, 2002, vol. 152–153, p. 555.
  2. Demin, A. and Tsiakaras, P.E., Int. J. Hydrogen Energy, 2001, vol. 26, p. 1103.
  3. Ni, M., Leung, M.K.H., and Leung, D.Y.C., Fuel Cells, 2007, vol. 7, p. 269.
  4. Uchida, H., Tanaka, S., and Iwahara, H., J. Appl. Electrochem., 1985, vol. 15, p. 93.
  5. Fabbri, E., D’Epifanio, A., Di Bartolomeo, E., Licoccia, S., and Traversa, E., Solid State Ionics, 2008, vol. 179, p. 558.
  6. Hibino, T., Hashimoto, A., Suzuki, M., and Sano, M., J. Electrochem. Soc., 2002, vol. 149, p. A1503.
  7. Fabbri, E., Pergolesi, D., and Traversa, E., Sci. Technol. Adv. Mater., 2010, vol. 11, no. 4, p. 044301.
  8. Essoumhi, A., Taillades, G., Taillades-Jacquin, M., Jones, D.J., and Rozière, J., Solid State Ionics, 2008, vol. 179, p. 2155.
  9. Chevallier, L., Zunic, M., Esposito, V., Di Bartolomeo, E., and Traversa, E., Solid State Ionics, 2009, vol. 180, p. 715.
  10. Mather, G.C., Figueiredo, F.M., Fagg, D.P., Norby, T., Jurado, J.R., and Frade, J.R., Solid State Ionics, 2003, vol. 158, p. 333.
  11. Yamaguchi, S., Shishido, T., Yugami, H., Yamamoto, S., and Hara, S., Solid State Ionics, 2003, vol. 162–163, p. 291.
  12. Ito, N., Iijima, M., Kimura, K., and Iguchi, S., J. Power Sources, 2005, vol. 152, p. 200.
  13. Scholten, M.J., Schoonman, J., van Miltenburg, J.C., and Oonk, H.A.J., Solid State Ionics, 1993, vol. 61, p. 83.
  14. Babilo, P., Uda, T., and Haile, S.M., J. Mater. Res., 2007, vol. 22, p. 1322.
  15. Gorelov, V.P., Balakireva, V.B., Kuz’min, A.V., and Plaksin, S.V., Inorg. Mater., 2014, vol. 50, p. 535.
  16. Gorelov, V.P., Balakireva, V.B., and Kuz’min, A.V., Phys. Solid State, 2016, vol. 58, no. 1, p. 12.
  17. Dunyushkina, L.A., Plaksin, S.V., Pankratov, A.A., Kuz’mina, L.A., Kuimov, V.M., and Gorelov, V.P., Russ. J. Electrochem., 2011, vol. 47, p. 1274.
  18. Dunyushkina, L.A., Smirnova, E.O., Smirnov, S.V., Kuimov, V.M., and Plaksin, S.V., Ionics, 2013, vol. 19, p. 511.
  19. Dunyushkina, L.A., Smirnov, S.V., Plaksin, S.V., Kuimov, V.M., and Gorelov, V.P., Ionics, 2013, vol. 19, p. 1715.
  20. Dunyushkina, L.A., Smirnov, S.V., Kuimov, V.M., and Gorelov, V.P., Int. J. Hydrogen Energy, 2014, vol. 39, p. 18385.
  21. Jurado, J.R., Colomer, M.T., and Frade, J.R., Solid State Ionics, 2001, vol. 143, p. 251.
  22. Jung, W. and Tuller, H.L., J. Electrochem. Soc., 2008, vol. 155, p. B1194.
  23. Kurteeva, A.A., Bogdanovich, N.M., Bronin, D.I., Porotnikova, N.M., Vdovin, G.K., Pankratov, A.A., Beresnev, S.M., and Ku’zmina, L.A., Russ. J. Electrochem., 2010, vol. 46, p. 811.
  24. Kurteeva, A.A., Beresnev, S.M., Osinkin, D.A., Kuzin, B.L., Vdovin, G.K., Zhuravlev, V.D., Bogdanovich, N.M., Bronin, D.I., Pankratov, A.A., and Yaroslavtsev, I.Yu., Russ. J. Electrochem., 2011, vol. 47, p. 1381.
  25. Osinkin, D.A., Bronin, D.I., Beresnev, S.M., Bogdanovich, N.M., Zhuravlev, V.D., Vdovin, G.K., and Demyanenko, T.A., J. Solid State Electrochem., 2014, vol. 18, p. 149.
  26. Kuzmin, A.V., Gorelov, V.P., Melekh, B.T., Glerup, M., and Poulsen, F.W., Solid State Ionics, 2003, vol. 162–163, p. 13.
  27. Shkerin, S.N., Bronin, D.I., Kovyazina, S.A., Gorelov, V.P., Kuzmin, A.V., Martemyanova, Z.S., and Beresnev, S.M., Solid State Ionics, 2004, vol. 171, p. 129.
  28. Matsumoto, Y., Omae, M., Sugiyama K., and Sato, E., J. Phys. Chem., 1987, vol. 91, p. 577.
  29. Deshmukh, S.B., Bari, R.H., Patil, G.E., Kajale, D.D., Jain, G.H., and Patil, L.A., Int. J. Smart Sens. Intell. Syst., 2012, vol. 5, p. 540.
  30. Samata, H., Tanaka, S., Mizusaki, S., Nagata, Y., Ozawa, T.C., Sato, A., and Kosuda, K., J. Cryst. Process Technol., 2012, vol. 2, p. 16.
  31. Jeon, S.-Y., Lim, D.-K., Choi, M.-B., Wachsman, E.D., and Song, S.-J., Sep. Purif. Technol., 2011, vol. 79, p. 337.
  32. Bishop, S.R., Acta Mech. Sin., 2013, vol. 29, no. 3, p. 312.
  33. Yakimenko, L.M., Elektrodnye materially v prikladnoi khimii (Electrode Materials in Applied Chemistry), Moscow: Khimiya, 1977.