Examples



mdbootstrap.com



 
Статья
2022

Adsorption–Desorption Interaction between Amino Acids and Surfaces of Hydroxylapatite


O. A. GolovanovaO. A. Golovanova
Российский журнал физической химии А
https://doi.org/10.1134/S003602442203013X
Abstract / Full Text

A study is performed of the biogenic crystallization (adsorption and desorption) of amino acids on surfaces of hydroxylapatite. The effect the solution pH and the structure of the amino acid have on the maximum adsorption and desorption of a number of amino acids is revealed. Orders of amino acids with respect to adsorption and desorption from the hydroxylapatite surface are determined. A mechanism of amino acid–hydroxylapatite surface interaction is proposed. The mechanism is determined by the surface charge of the solid phase and the amino acid structure and has an electrostatic pattern. It is found that desorption from a hydroxylapatite surface reaches its limit value at a pH near the isoelectric point of the amino acid.

Author information
  • Dostoevsky State University, 644053, Omsk, RussiaO. A. Golovanova
References
  1. G. A. Silva, O. P. Coutinho, P. Ducheyne, and R. L. Reis, J. Regen. Med. 1, 97 (2007).
  2. S. A. Gerk, O. A. Golovanova, and V. N. Odazhiu, Inorg. Mater. 54, 305 (2018).
  3. O. A. Golovanova and S. A. Gerk, Inorg. Mater. 56, 543 (2020).
  4. O. A. Golovanova and I. A. Tomashevsky, Russ. J. Phys. Chem. 93, 7 (2019).
  5. E. S. Chikanova and O. A. Golovanova, Crystallogr. Rep. 64, 152 (2019).
  6. D. E. Fleming, W. Bronswijk, and R. L. Ryall, Clin. Sci. 101, 159 (2001).
  7. Y. H. Hsu, I. G. Turner, and A. W. Miles, Sci. Mater. Med. 18, 2319 (2007).
  8. X. D. Zhu, H. S. Fan, Y. M. Xiao, et al., Acta Biomater. 5, 1311 (2009).
  9. S. J. Segvich, H. C. Smith, and D. H. Kohn, Biomaterials 30, 1287 (2009).
  10. X. D. Zhu, H. J. Zhang, H. S. Fan, et al., Acta Biomater. 6, 1536 (2009).
  11. A. Rimola, M. Corno, C. Zicovich-Wilson, and P. Ugliengo, Am. Chem. Soc. 130, 16181 (2008).
  12. A. Rimola, M. Corno, C. M. Zicovich-Wilson, and P. Ugliengo, Phys. Chem. Chem. Phys. 11, 9005 (2009).
  13. S. A. Lemesheva, O. A. Golovanova, and S. V. Turenkov, Khim. Inter. Ustoich. Razvit. 3, 327 (2009).
  14. N. A. Zakharov, Zh. A. Ezhova, E. M. Koval’, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 62, 404 (2017).
  15. O. A. Golovanova, Key Eng. Mater. 781, 211 (2018).
  16. O. A. Golovanova and K. K. Golovchenko, Russ. J. Phys. Chem. 93, 2275 (2019).
  17. E. N. Koukaras and A. Zdetsis, J. Phys. Chem. Lett., No. 2, 272 (2011).
  18. I. S. Chekman, N. A. Gorchakova, N. O. Sirova, et al., Biotechnol. Acta 7 (6), 83 (2014).
  19. A. El. Rhilassi, M. Mourabet, M. Bennani-Ziatni, et al., J. Saudi Chem. Soc. 20, 632 (2016).
  20. J. A. Siddique and S. Naqvi, J. Chem. Eng. Data 55, 2930 (2010).
  21. Yu. K. Egorov-Tismenko, Crystallography and Crystal Chemistry, The Manual (KDU, Moscow, 2005) [in Russian].
  22. A. P. Solonenko and O. A. Golovanova, Russ. J. Inorg. Chem. 59, 1228 (2014).
  23. Zh. N. Malysheva and I. A. Novakov, Theoretical and Practical Manual on Surface Phenomena and Dispersed Systems (VolgGTU, Volgograd, 2008) [in Russian].
  24. S. Elangovan, H. C. Margolis, F. G. Oppenheim, and E. Beniash, Langmuir 23, 11200 (2007).
  25. M. van der Veen, W. Norde, and M. C. Stuart, Collolid Surf., B 35, 33 (2004).
  26. N. Almora-Barrios, K. F. Austen, and N. H. de Leeuw, Langmuir 25, 5018 (2009).
  27. Ch. Kojima and K. Watanabe, J. Drug Deliv., 932461 (2012).