
Kinetics of Mediated Bioelectrocatalytic Oxidation of Glucose by Protein Extracts of Escherichia coli







Российский электрохимический журнал
https://doi.org/10.1134/S1023193520110038
The kinetics of bioelectrocatalytic oxidation of glucose by protein extracts—supersonic-destruction products of Escherichia coli BB cells—is studied in the presence of [Fe(CN)6]3– as the mediator system. The effect of the concentration of mediator, glucose, and protein extract is studied by electrochemical methods. The results are used in determination of effective parameters: the rate constant of glucose biooxidation, the constant of substrate-induced inhibition, and the activation energy. It is shown that the activation energy of this reaction falls into the interval of activation energies of dehydrogenase reactions. The voltammetric characteristics of a model asymmetrical biofuel cell which employs the protein extract as the anodic catalyst are determined. The maximum specific power of such model biofuel cell is found to be 400 µW/cm2 (4 W/m2).
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, RussiaM. V. Dmitrieva, E. V. Gerasimova & E. V. Zolotukhina
- Moscow State University, Leninskie Gory, 119992, Moscow, RussiaI. N. Shishov, S. V. Shmalii, V. D. Myazin & A. Yu. Bazhenov
- Moscow Institute of Physics and Technology, 141701, Dolgoprudnyi, Moscow oblast, RussiaE. V. Zolotukhina
- Cosnier, S., Gross, A.J., A. Le Goff, and Holzinger, M., Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations, J. Power Sources, 2016, vol. 325, p. 252.
- Rabaey, K., Boon, N., Höfte, M., and Verstraete, W., Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol., 2005, vol. 39, p. 3401.
- Stoica, L., Ruzgas, T., Ludwig, R., Haltrich, D., and Gorton, L., Direct electron transfers a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes v illosa. Comparison with CDH from Phanerochaete chrysosporium, Langmuir, 2006, vol. 22, p. 10801.
- Hickey, D.P., Milton, R.D., Rasmussen, M., Abdellaoui, S., Nguyen, K., and Minteer, S.D, Fundamentals and applications of bioelectrocatalysis, Electrochemistry, 2015, vol. 13, p. 97.
- Cooper, J. and Cass, A., Biosensors, New York: OUP Oxford, 2004, p. 59.
- Bartlett, P.N., Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications, New York: Wiley, 2008.
- Bartlett, P.N. and Pratt, K.F.E., A study of the kinetics of the reaction between ferrocene monocarboxylic acid and glucose oxidase using the rotating-disc electrode, J. Electroanal. Chem., 1995, vol. 397, no. 1–2, p. 53.
- Alegret S., Integrated Analytical Systems, Amsterdam: Gulf Professional, 2003.
- Flexer, V., Ielmini, M.V., Calvo, E.J., and Bartlett, P.N., Extracting kinetic parameters for homogeneous [Os (bpy) 2ClPyCOOH]+ mediated enzyme reactions from cyclic voltammetry and simulations, Bioelectrochem., 2008, vol. 74, no. 1, p. 201.
- Hui, T.W., Wong, K.Y., and Shiu, K.K., Kinetics of o-benzoquinone mediated oxidation of glucose by glucose oxidase at edge plane pyrolytic graphite electrode, Electroanalysis, 1996, vol. 8, no. 6, p. 597.
- delle Noci, S., Frasconi, M., Favero, G., Tosi, M., Ferri, T., and Mazzei, F., Electrochemical kinetic characterization of redox mediated glucose oxidase reactions: A simplified approach, Electroanalysis, 2008, vol. 20, no. 2, p. 163.
- Limoges, B. and Savéant, J.M., Cyclic voltammetry of immobilized redox enzymes. Interference of steady-state and non-steady-state Michaelis–Menten kinetics of the enzyme–redox cosubstrate system, J. Electroanal. Chem., 2003, vol. 549, p. 61.
- Yokoyama, K. and Kayanuma, Y., Cyclic voltammetric simulation for electrochemically mediated enzyme reaction and determination of enzyme kinetic constants, Analytical Chem., 1998, vol. 70, no. 16, p. 3368.
- Herenda, S., Ostojić, J., Hasković, E., Hasković, D., Miloš, M., and Galić, B., Electrochemical investigation of the influence of K2[B3O3F4OH] on the activity of immobilized superoxide dismutase, Int. J. Electrochem. Sci., 2018, vol. 13, p. 3279.
- Britz, D. and Strutwolf, J., Digital simulation of chronoamperometry at an electrode within a hemispherical polymer drop containing an enzyme: Comparison of a hemispherical with a flat disk electrode, Biosens. Bioelectron., 2013, vol. 50, p. 269.
- Araminaitė, R., Garjonytė, R., and Malinauskas, A., Rotating disk electrode study of Prussian blue-and glucose oxidase-based bioelectrode, J. Electroanal. Chem., 2012, vol. 672, p. 12.
- Sekretaryova, A.N., Vagin, M.Y., Beni, V., Turner, A.P., and Karyakin, A.A., Unsubstituted phenothiazine as a superior water-insoluble mediator for oxidases, Biosens. Bioelectron., 2014, vol. 53, p. 275.
- Ikeda, T., Katasho, I., Kamei, M., and Senda, M., Electrocatalysis with a glucose-oxidase-immobilized graphite electrode, Agric. Biol. Chem., 1984, vol. 48, no. 8, p. 1969.
- Prévoteau, A., Geirnaert, A., Arends, J.B., Lannebère, S., Van de Wiele, T., and Rabaey, K., Hydrodynamic chronoamperometry for probing kinetics of anaerobic microbial metabolism–case study of Faecalibacterium prausnitzii, Sci. Rep., 2015, vol. 5, p. 11484.
- Léger, C., Dementin, S., Bertrand, P., Rousset, M., and Guigliarelli, B., Inhibition and aerobic inactivation kinetics of Desulfovibrio fructosovorans NiFe hydrogenase studied by protein film voltammetry, J. Amer. Chem. Soc., 2004, vol. 126, no. 38, p. 12162.
- Dmitrieva, M.V., Zolotukhina, E.V., Gerasimova, E.V., Terent’ev, A.A., and Dobrovol’skii, Y.A., Dehydrogenase and electrochemical activity of Escherichia coli extracts, Appl. Biochem. Microbiol., 2017, vol. 53, p. 458.
- Dmitrieva, M.V., Gerasimova, E.V., Terent’ev, A.A., Dobrovol’skii, Y.A., and Zolotukhina, E.V., Electrochemical peculiarities of mediator-assisted bioelectrocatalytic oxidation of glucose by a new type of bioelectrocatalyst, Russ. J. Electrochem., 2019, vol. 55, p. 889.
- Zolotukhina, E.V., Chaika, M.Yu., Kravchenko, T.A., Novikova, V.V., Bulavina, E.V., and Vdovina, S.N., Electronic conductivity and potential of sulfocation-exchange membrane MK-40 modified by disperse copper, Sorbtsionnye Khromatogr. Protsessy, 2008, vol. 8, no. 4, p. 636.
- Kegg: Metabolic pathways—Escherichia coli O25b:K100:H4-ST131 EC958 (UPEC)
- Han, M.-J. and Lee, S.Y., The Escherichia coli proteome: past, present and future prospects, Microbiol. Mol. Biol. Rev., 2006, vol. 70, no. 2, p. 362.
- Ghaly, A.E. and Mahmoud, N.S., Optimum conditions for measuring dehydrogenase activity of Aspergillus niger using TTC, Amer. J. Biochem. and Biotechnol., 2006, vol. 2, no. 4, p. 186.
- https://www.brenda-enzymes.org/enzyme.php?ecno=1.1.1.49.
- Shijie, Liu, Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design, Amsterdam: Elsevier, 2016.
- Reed, M.C., Lieb, A., and Nijhout, H.F., The biological significance of substrate inhibition: a mechanism with diverse functions, Bioessays, 2010, vol.32, no. 5, p.422.
- Doran, P M., Bioprocess Engineering Principles, London: Acad. Press Limited, 1995.
- Mehdinia, A., Ehsan, Z., and Jabbari, A., Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation, Int. J. Hydrogen Energy, 2014, vol. 39, no. 20, p. 10724.
- Miyake, T., Haneda, K., Nagai, N., Yatagawa, Y., Onami, H., Yoshino, S., and Nishizawa, M., Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms, Energy Environ. Sci., 2011, vol. 4, no. 12, p. 5008.
- Gonzalez-Solino, C. and Lorenzo, M.D., Enzymatic fuel cells: Towards self-powered implantable and wearable diagnostics, Biosensors, 2018, vol. 8, no. 1, p. 11.