Статья
2018

Online Monitoring of the Atmospheric Corrosion of Aluminium Alloys Using Electrochemical Noise Technique


Lei Han Lei Han , Da-Hai Xia Da-Hai Xia , Shi-Zhe Song Shi-Zhe Song , Zheng Zhang Zheng Zhang , Hui-Chao Bi Hui-Chao Bi , Zhiming Gao Zhiming Gao , Jihui Wang Jihui Wang , Wenbin Hu Wenbin Hu
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518080025
Abstract / Full Text

In this work, an electrochemical system based on electrochemical noise (EN) technique for online detection and monitoring of atmospheric corrosion of LY12CZ aluminium alloys has been established. A detecting probe and a monitoring instrument with a software have been developed to perform the electrochemical noise measurements with zero resistance ammeter (ZRA) mode. Experimental results show that the atmospheric corrosion behaviour of aluminium could be effectively detected and monitored by the analysis of the electrochemical potential and current noise, also by the noise resistance variation.

Author information
  • Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China

    Lei Han, Da-Hai Xia, Shi-Zhe Song, Zheng Zhang, Hui-Chao Bi, Zhiming Gao, Jihui Wang & Wenbin Hu

References
  1. Schindelholz, E., Risteen, B.E., and Kelly, R.G., Effect of relative humidity on corrosion of steel under Sea Salt aerosol proxies: I. NaCl, J. Electrochem. Soc., 2014, vol. 161, pp. C450–C459.
  2. Schindelholz, E., Risteen, B.E., and Kelly, R.G., Effect of relative humidity on corrosion of steel under Sea Salt aerosol proxies: II. MgCl2, artificial seawater, J. Electrochem. Soc., 2014, vol. 161, pp. C460–C470.
  3. Esmaily, M., Shahabi-Navid, M., Svensson, J.E., Halvarsson, M., Nyborg, L., Cao, Y., and Johansson, L.G., Influence of temperature on the atmospheric corrosion of the Mg–Al alloy AM50, Corros. Sci., 2015, vol. 90, pp. 420–433.
  4. Peng, A.Y.M., Lyon, S.B., Thompson, G.E., Johnson, J.B., Wood, G.C., and Ferguson, J.M., Comparison of cross-sectional image analysis with weight change measurements for assessing non-uniform attack during corrosion testing of aluminium, Br. Corros. J., 1993, vol. 28, pp. 103–106.
  5. Thee, C., Hao, L., Dong, J., Mu, X., Wei, X., Li, X., and Ke, W., Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet–dry condition, Corros. Sci., 2014, vol. 78, pp. 130–137.
  6. Shi, Y., Tada, E., and Nishikata, A., A method for determining the corrosion rate of a metal under a thin electrolyte dilm, J. Electrochem. Soc., 2015, vol. 162, pp. C135–C139.
  7. Stratmann, M. and Streckel, H., On the atmospheric corrosion of metals which are covered with thin electrolyte layers, I. Verification of the experimental technique, Corros. Sci., 1990, vol. 30, pp. 681–696.
  8. Stratmann, M. and Streckel, H., On the atmospheric corrosion of metals which are covered with thin electrolyte layers. II. Experimental results, Corros. Sci., 1990, vol. 30, pp. 697–714.
  9. Stratmann, M., Streckel, H., Kim, K.T., and Crockett, S., On the atmospheric corrosion of metals which are covered with thin electrolyte layers, III. the measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers, Corros. Sci., 1990, vol. 30, pp. 715–734.
  10. Frankel, G.S., Stratmann, M., Rohwerder, M., Michalik, A., Maier, B., Dora, J., and Wicinski, M., Potential control under thin aqueous layers using a Kelvin Probe, Corros. Sci., 2007, vol. 49, pp. 2021–2036.
  11. Nishikata, A., Ichihara, Y., and Tsuru, T., An application of electrochemical impedance spectroscopy to atmospheric corrosion study, Corros. Sci., 1995, vol. 37, pp. 897–911.
  12. El-Mahdy, G.A., Nishikata, A., and Tsuru, T., Electrochemical corrosion monitoring of galvanized steel under cyclic wet–dry conditions, Corros. Sci., 2000, vol. 42, pp. 183–194.
  13. El-Mahdy, G.A., Nishikata, A., and Tsuru, T., AC impedance study on corrosion of 55% Al–Zn alloycoated steel under thin electrolyte layers, Corros. Sci., 2000, vol. 42, pp. 1509–1521.
  14. Yadav, A.P., Nishikata, A., and Tsuru, T., Electrochemical impedance study on galvanized steel corrosion under cyclic wet–dry conditions–influence of time of wetness, Corros. Sci., 2004, vol. 46, pp. 169–181.
  15. Nishikata, A., Zhu, Q., and Tada, E., Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method, Corros. Sci., 2014, vol. 87, pp. 80–88.
  16. Nishikata, A., Ichihara, Y., and Tsuru, T., Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer, Electrochim. Acta, 1996, vol. 41, pp. 1057–1062.
  17. Nishikata, A., Yamashita, Y., Katayama, H., Tsuru, T., Usami, A., Tanabe, K., and Mabuchi, H., An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet–dry condition, Corros. Sci., 1995, vol. 37, pp. 2059–2069.
  18. Nishikata, A., Takahashi, T., Hou, B.-R., and Tsuru, T., Monitoring of corrosion rate of carbon steel under wet/dry cycle conditions and its corrosion mechanism, Zairyo to Kankyo, 1994, vol. 43, pp. 188–193.
  19. Nishikata, A., Kumagai, S., and Tsuru, T., The application of AC impedance technique to atmospheric corrosion study impedance characteristics of metal/thin electrolyte layer interface, Zairyo to Kankyo, 1994, vol. 43, pp. 82–88.
  20. Nishikata, A., Ichihara, Y., Hayashi, Y., and Tsuru, T., Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron, J. Electrochem. Soc., 1997, vol. 144, pp. 1244–1252.
  21. Forsberg, J., Hedberg, J., Leygraf, C., Nordgren, J., and Duda, L.-C., The initial stages of atmospheric corrosion of iron in a saline environment studied with time-resolved in situ X-ray transmission microscopy, J. Electrochem. Soc., 2010, vol. 157, pp. C110–C115.
  22. Qiu, P., Persson, D., and Leygraf, C., Initial atmospheric corrosion of zinc induced by carboxylic acids: A quantitative in situ study, J. Electrochem. Soc., 2009, vol. 156, pp. C441–C447.
  23. Gil, H. and Leygraf, C., Initial atmospheric corrosion of copper induced by carboxylic acids: A comparative in situ study, J. Electrochem. Soc., 2007, vol. 154, pp. C611–C617.
  24. Lin, H. and Frankel, G.S., Atmospheric corrosion of Cu during constant deposition of NaCl, J. Electrochem. Soc., 2013, vol. 160, pp. C336–C344.
  25. Li, S. and Hihara, L.H., A micro-Raman spectroscopic study of marine atmospheric corrosion of carbon steel: The effect of akaganeite, J. Electrochem. Soc., 2015, vol. 162, pp. C495–C502.
  26. Feng, Z., Frankel, G.S., and Matzdorf, C.A., Quantification of accelerated corrosion testing of coated AA7075-T6, J. Electrochem. Soc., 2014, vol. 161, pp. C42–C49.
  27. Shi, J., Xia, D., Wang, J., Zhou, C., and Liu, Y., Degradation process of coated tinplate by phase space reconstruction theory, Trans. Tianjin Univ., 2013, vol. 19, pp. 92–97.
  28. Xia, D.H., Song, S.Z., Wang, J.H., Shi, J.B., Bi, H.C., and Gao, Z.M., Determination of corrosion types from electrochemical noise by phase space reconstruction theory, Electrochem. Commun., 2012, vol. 15, pp. 88–92.
  29. Wei, Y.-J., Xia, D.-H., and Song, S.-Z., Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis, Russ. J. Electrochem., 2016, vol. 52, pp. 560–575.
  30. Xia, D.H., Song, S.Z., and Behnamian, Y., Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms, Corros. Eng., Sci. Technol., 2016, vol. 51, pp. 527–544.
  31. Zhao, R., Zhang, Z., Shi, J.B., Tao, L., and Song, S.Z., Characterization of stress corrosion crack growth of 304 stainless steel by electrochemical noise and scanning Kelvin probe, J. Cent. South Univ. Technol. (Engl. Ed.), 2010, vol. 17, p. 13–18.
  32. Du, G., Li, J., Wang, W.K., Jiang, C., and Song, S.Z., Detection and characterization of stress-corrosion cracking on 304 stainless steel by electrochemical noise and acoustic emission techniques, Corros. Sci., 2011, vol. 53, pp. 2918–2926.
  33. Breimesser, M., Ritter, S., Seifert, H.P. Suter, T., and Virtanen, S., Application of electrochemical noise to monitor stress corrosion cracking of stainless steel in tetrathionate solution under constant load, Corros. Sci., 2012, vol. 63, pp. 129–139.
  34. Shahidi, M., Moghaddam, R.F., Gholamhosseinzadeh, M.R., and Hosseini, S.M.A., Investigation of the cathodic process influence on the electrochemical noise signals arising from pitting corrosion of Al alloys using wavelet analysis, J. Electroanal. Chem., 2013, vol. 693, pp. 114–121.
  35. Moshrefi, R., Mahjani, M.G., and Jafarian, M., Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification, Electrochem. Commun., 2014, vol. 48, pp. 49–51.
  36. Huang, X.Q., Chen, Y., Fu, T.W., Zhang, Z., and Zhang, J.Q., Study of tin electroplating process using electrochemical impedance and noise techniques, J. Electrochem. Soc., 2013, vol. 160, pp. D530–D537.
  37. Torres-Mendoza, V., Rodriguez-Gomez, F.J., Garcia-Ochoa, E.M., and Genesca, J., The assessment of natural atmosphere corrosivity by the use of electrochemical noise analysis, Anti-Corros. Methods Mater., 2006, vol. 53, pp. 348–356.
  38. Garcia-Ochoa, E., Gonzalez-Sanchez, J., Corvo, F., Usagawa, Z., Dzib-Peerez, L., and Castaneda, A., Application of electrochemical noise to evaluate outdoor atmospheric corrosion of copper after relatively short exposure periods, J. Appl. Electrochem., 2008, vol. 38, pp. 1363–1368.
  39. Eden, D.A., M.H.a.B.S.S.i.P.m.f.c.c., ACS Symposium, Ser. 322, Dicke, R.A. and Floyd, F.L., Ed., Washington, DC: American Chem. Soc., 1986.
  40. Chen, J.F. and Bogaerts, W.F., The physical meaning of noise resistance, Corros. Sci., 1995, vol. 37, pp. 1839–1842.
  41. Bertocci, U., Gabrielli, C., Huet, F., and Keddam, M., Noise resistance applied to corrosion measurements, 1. Theoretical analysis, J. Electrochem. Soc., 1997, vol. 144, pp. 31–37.
  42. Gusmano, G., Montesperelli, G., Pacetti, S., Petitti, A., and D’Amico, A., Electrochemical noise resistance as a tool for corrosion rate prediction, Corrosion (Houston), 1997, vol. 53, pp. 860–868.
  43. Mansfeld, F. and Xiao, H., Electrochemical noise analysis of iron exposed to NaCl solutions of different corrosivity, J. Electrochem. Soc., 1993, vol. 140, pp. 2205–2209.
  44. Mizuno, D., Suzuki, S., Fujita, S., and Hara, N., Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor, Corros. Sci., 2014, vol. 83, pp. 217–225.
  45. Hei, M., Xia, D.-H., Song, S.-Z., and Gao, Z., Sensing atmospheric corrosion of carbon steel and low-alloy steel using the electrochemical noise technique: Effects of weather conditions, Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 6, pp. 1100–1113.