Статья
2018

Quantum-Chemical Study of the Adsorption of Bi3+ Ions on Au(111)


N. A. Rogozhnikov N. A. Rogozhnikov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518130372
Abstract / Full Text

The interaction between the Bi3+ ion and gold is studied using the cluster metal surface model and the density functional method. The geometric and energy characteristics of the interaction between this ion and the gold surface are estimated. Its adsorption is accompanied by the transfer of a core part of the charge onto the gold surface. The electron structure of the Au–Biads3+ system is analyzed. The participation of an adsorbed bismuth ion and the gold atoms adjacent to it in the formation of molecular orbitals in the system is estimated. It is established that the contribution to their formation is provided by the s- and p-orbitals of the bismuth ion and the d-orbitals of gold with its s-orbitals participating only slightly. The interaction with the solvent decreases the transfer of the charge from an adsorbed bismuth ion to gold. It is demonstrated that the hydrolyzability of the bismuth ion decreases after its transition from the electrolyte phase onto the surface.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630128, Russia

    N. A. Rogozhnikov

  • Novosibirsk State Technical University, Novosibirsk, 630073, Russia

    N. A. Rogozhnikov

References
  1. Haissinsky, M., Mécanisme des dépots électrolytiques et expériences avec les radioéléments, J. Chim. Phys. Phys.-Chim. Biol., 1946. vol. 43, pp. 21–29.
  2. Kolb, D.M., Przasnyski, M., and Gerischer, H., Underpotential deposition of metals and work function differences, J. Electroanal. Chem. Interfacial Electrochem., 1974, vol. 54, no. 1, pp. 25–38.
  3. Kolb, D.M., Leutloff, D., and Przasnyski, M., Optical properties of gold electrode surfaces covered with metal monolayers, Surf. Sci., 1975, vol. 47, no. 2, pp. 622–634.
  4. McJntyre, J.D.E. and Peck, W.F., Electrodeposition of gold: depolarization effects induced by heavy metal ions, J. Electrochem. Soc., 1976, vol. 123, no. 12, pp. 1800–1813.
  5. Nicol, M.J., The anodic behaviour of gold. Part II— Oxidation in alkaline solutions, Gold Bull., 1980, vol. 13, no. 3, pp. 105–111.
  6. Sandenberg, R.F. and Miller, J.D., Catalysis of the leaching of gold in cyanide solutions by lead, bismuth and thallium, Miner. Eng., 2001, vol. 14, no. 11, pp. 1379–1386.
  7. Tamura, K., Ocko, B. M., Wang, J. X, and Adžić, R.R., Structure of active adlayers on bimetallic surfaces: oxygen reduction on Au(111) with Bi adlayers, J. Phys. Chem. B., 2002, vol. 106, no. 15, pp. 3896–3901.
  8. Ben Aoun, S., Dursun, Z., Sotomura, T., and Taniguchi, I., Effect of metal ad-layers on Au(111) electrodes on electrocatalytic reduction of oxygen in an alkaline solution, Electrochem. Commun., 2004, vol. 6, no. 8, pp. 747–752.
  9. Bek, R.Yu., Zelinskii, A.G., Ovchinnikova, S.N., and Vais, A.A., Catalytic activity of thallium, lead, and bismuth adatoms in the gold dissolution reaction in cyanide solutions: A comparative characterization, Russ. J. Electrochem., 2004, vol. 40, no. 2, pp. 123–129.
  10. Niece, B.K. and Gewirth, A.A., Potential-step chronocoulometric investigation of the surface coverages of coadsorbed Bi and hydroxide on Au (111) electrodes, Langmuir, 1996, vol. 12, no. 20, pp. 4909–4913.
  11. Stafford, G.R. and Bertocci, U., In situ stress and nanogravimetric measurements during underpotential deposition of bismuth on (111)-textured Au, J. Phys. Chem. B., 2006, vol. 110, no. 31, pp. 15493–15498.
  12. Thiel, K.-O., Hintze, M., Vollmer, A., and Donner, C., Bismuth UPD on the modified Au(111) electrode, J. Electroanal. Chem., 2010, vol. 638, no. 1, pp. 143–150.
  13. Schultze, J.W. and Dickertmann, D., Kinetic investigations of structural changes and desorption of metal adsorption layers on single crystal planes, Faraday Symp. Chem. Soc., 1977, vol. 12, pp. 36–50.
  14. Salié, G. and Bartels, K., Partial charge transfer and adsorption at metal electrodes. The underpotential deposition of Hg(I), Tl(I), Bi(III) and Cu(II) on polycrystalline gold electrodes, Electrochim. Acta, 1994, vol. 39, nos. 8–9, pp. 1057–1065.
  15. Adžić, R., Jovanc̆ićević, V., and Podlavicky, M., Optical and electrochemical study of underpotential deposition of bismuth on gold electrode, Electrochim. Acta, 1980, vol. 25, no. 9, pp. 1143–1146.
  16. Garland, J.E., Assiongbon, K.A., Pettit, C.M., Emery, S.B., and Roy, D., Kinetic analysis of electrosorption using fast Fourier transform electrochemical impedance spectroscopy: underpotential deposition of Bi3+ in the presence of coadsorbing on gold, Electrochim. Acta, 2002, vol. 47, no. 25, pp. 4113–4124.
  17. Deakin, M.R. and Melroy, O., Underpotential metal deposition on gold, monitored in situ with a quartz microbalance, J. Electroanal. Chem. Interfacial Electrochem., 1988, vol. 239, nos. 1–2, pp. 321–331.
  18. Pershina, V., Borschevsky, A., Anton, J., and Jacob, T., Theoretical predictions of trends in spectroscopic properties of gold containing dimers of the 6p and 7p elements and their adsorption on gold, J. Chem. Phys., 2010, vol. 133, no. 10, p. 104304.
  19. Rogozhnikov, N.A., Modification of gold surface by bismuth atoms. Quantum-chemical study, Trudy mezhdunarodnoi Rossiisko-Kazakhskoi shkoly-konferentsii studentov i molodykh uchenykh (Proc. Int. Russ.-Kazakh. School-Conference of Students and Young Scientists), Novosibirsk, 2015, p. 172.
  20. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., General atomic and molecular electronic structure system, J. Comput. Chem., 1993, vol. 14, no. 11, pp. 1347–1363.
  21. Neese, F., The ORCA program system, WIREs Comput. Mol. Sci., 2012, vol. 2, no. 1, pp. 73–78.
  22. Koch, W. and Holthausen, M.C., A Chemist’s Guide to Density Functional Theory, Weinheim: Wiley-VCH, 2001.
  23. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, no. 7, pp. 5648–5652.
  24. Stephens, P.J., Devlin, F.J., Chablowski, C.F., and Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, vol. 98, no. 45, pp. 11623–11627.
  25. Hay, P.J. and Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 1985, vol, 82, no. 1, pp. 299–310.
  26. McLean, A.D. and Chandler, G.S., Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18, J. Chem. Phys., 1980, vol. 72, no. 10, pp. 5639–5648.
  27. Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 1980, vol. 72, no. 1, pp. 650–654.
  28. Löwdin, P.-O., On the nonorthogonality problem, Adv. Quantum Chem., 1970, vol. 5, pp. 185–199.
  29. Weinhold, F., Natural bond orbital method, in Encyclopedia of Computational Chemistry, Schleyer, P.V.R., Allinger, N.L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., and Schreiner, P.R., Eds., Chichester: Willey, 1998. vol. 3, pp. 1792–1811.
  30. Glendening, E.D., Landis, C.R., and Weinhold, F., Natural bond orbital methods, WIREs Comput. Mol. Sci., 2012, vol. 2, no. 1, pp. 1–42.
  31. Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999.
  32. Titmuss, S., Wander, A., and King, D.A., Reconstruction of clean and adsorbate-covered metal surfaces, Chem. Rev., 1996, vol. 96, no. 4, pp. 1291–1306.
  33. Greenwood, N.N. and Earnshow, A., Chemistry of Elements, Oxford: Butterworth-Heinemann, 1998.
  34. Barone, V., Cossi, M., and Tomasi, J., A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, J. Chem. Phys., 1997, vol. 107, no. 8, pp. 3210–3221.
  35. Barone, V. and Cossi, M., Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A., 1998, vol. 102, no. 11, pp. 1995–2001.
  36. Cossi, M., Rega, N., Scalmani, G., and Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem., 2003, vol. 24, no. 6, pp. 669–681.
  37. Boys, S.F. and Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys., 1970, vol. 19, no. 4, pp. 553–566.
  38. Jensen, F., Introduction to Computational Chemistry, Chichester: Wiley, 2007.
  39. Pyykkö, P., Theoretical chemistry of gold, Angew. Chem., Int. Ed., 2004, vol. 43, no. 34, pp. 4412–4456.
  40. Encyclopedia of Computational Chemistry, Schleyer, P.V.R., Allinger, N.L., Clark T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., and Schreiner, P.R., Eds., Chichester: Willey, 1998, vol. 1.
  41. O’Boyle, N.M., Tenderholt, A.L., and Langner, K.M., CCLIB: a library for package-independent computational chemistry algorithms, J. Comput. Chem., 2008, vol. 29, no. 5, pp. 839–845.
  42. Chambers, C.C., Hawkins, G.D., Cramer, C.J., and Truhlar, D.C., Model for aqueous solvation based on class IV atomic charges and first solvation shell effects, J. Phys. Chem., 1996, vol. 100, no. 40, pp. 16385–16398.
  43. Da Silva, E.F., Svendsen, H.F., and Merz, K.M., Explicitly representing the solvation shell in continuum solvent calculations, J. Phys. Chem. A, 2009, vol. 113, no. 22, pp. 6404–6409.
  44. Desnoyers, J.E. and Jolicoeur, C., Hydration effects and thermodynamic properties of ions, in Modern Aspects of Electrochemistry, Bockris, J.O’M. and Conway, B.E., Eds., New York: Plenum Press, 1969, vol. 5, ch. 1, p. 26.
  45. Robinson, R.A. and Stokes, R.H., Electrolyte solutions, London: Butterworths, 1959.
  46. Marcus, Y., Thermodynamics of solvation of ions. Part 5–Gibbs free energy of hydration at 298.15K, J. Chem. Soc., Faraday Trans., 1991, vol. 87, no. 18, pp. 2995–2999.
  47. Bondi, A., Van der Waals volumes and radii, J. Phys. Chem., 1964, vol. 68, no. 3, pp. 441–451.
  48. Schmickler, W., Electron and ion transfer reactions on metal electrodes, Electrochim. Acta, 1996, vol. 41, no. 14, pp. 2329–2338.
  49. Nechaev, I.V. and Vvedenski, A.V., Quantum chemical modeling of the adsorption of chloride ion and water molecule on group 1B metals, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 2, pp. 137–146.
  50. Milanov, M., Rösch, F., Khalkin, V.A., Henniger, U., and Hung, T.K., Electromigration of ions of radionuclides without carriers in electrolytes. Hydrolysis of Bi(III) in aqueous solutions, Sov. Radiochem., 1987, vol. 29, p. 18.
  51. Billing, C. and Cukrowski, I., Measurements and modeling to determine the reduction potential of uncomplexed Bi(III) in nitrate solutions for application in Bi(III)-ligand equilibria studies by voltammetry, J. Phys. Chem. B, 2016, vol. 120, no. 18, pp. 4268–4278.
  52. Yukhin, Yu.M. and Mikhailov, Yu.I., Khimiya vismutovykh soedinenii i materialov (Chemistry of Bismuthic Compounds and Materials), Novosibirsk: SO RAN, 2001.