Hydrothermal Assisted Synthesis of Micro-Bricks Shaped WO3 for Electrochemical Oxidation of Paracetamol: A Microstructured Paracetamol Sensor

 Bhagyashri B. Kamble Bhagyashri B. Kamble , Anita K. Tawade Anita K. Tawade , Pravin Kamble Pravin Kamble , Mukesh N. Padavi Mukesh N. Padavi , Kiran Kumar K. Sharma Kiran Kumar K. Sharma , Balu D. Ajalkar Balu D. Ajalkar , Shivaji N. Tayade Shivaji N. Tayade
Российский электрохимический журнал
Abstract / Full Text

A micro-bricks shaped tungsten oxide (WO3) was prepared by hydrothermal method. The prepared material was characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), infrared (IR) spectroscopy. The prepared material was used as a modifier for glassy carbon electrode by a simple drop casting method to the study the electrochemical characteristics of paracetamol by cyclic voltammetry and differential pulse voltammetry methods. This sensor shows high catalytic activity for the oxidation of paracetamol. The limits of detection (LOD) and the limit of quantification (LOQ) were found to be 7. 17 × 10–4 and 2.39 × 10–3 M with a linear range of 0.75 × 10–4 to 6.75 × 10–3 M. The proposed sensor was successfully used for determining the paracetamol content in a human urine samples.

Author information
  • Shivraj College Gadhinglaj, Shivaji University, 416004, Kolhapur, Maharashtra, India

    Bhagyashri B. Kamble & Balu D. Ajalkar

  • School of Nanoscience and Biotechnology, Shivaji University, 416004, Kolhapur, Maharashtra, India

    Anita K. Tawade, Pravin Kamble, Mukesh N. Padavi & Kiran Kumar K. Sharma

  • Department of chemistry, Shivaji University, 416004, Kolhapur, Maharashtra, India

    Shivaji N. Tayade

  1. Martindale, The Extra Pharmacopoeia, 29th Ed., The Pharmaceutical Press, London, (1989) 32.
  2. Jia, L., Zhang, X., Li, Q., and Wang, S., Determination of Acetaminophenone by square wave voltammetry at a gold electrode modified by 4-amino-2-mercaptopyrimidine self-assembled monolayers, J. Analyt. Chem., 2007, vol. 62, p. 266.
  3. Kachoosangi, R.T., Wildgoose, G.G., and Compton, R.G., Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode, Analyt. Chim. Acta, 2008, vol. 618, p. 54.
  4. Cramer, D.W., Harlow, B.L., Titus-Ernstoff, L., Bohlke, K., Welch, W.R., and Greenberg, E.R., Over-the-counter analgesics and risk of ovarian cancer, The Lancet, 1998, vol. 351, p. 104.
  5. Rowden, A.K., Norvell, J., Eldridge, D.L., and Kirk, M.A., Acetaminophen poisoning, Clinics in Laboratory Medicine, 2006, vol. 26, p. 49.
  6. Sullivan, J. E. and Farrar, H.C., Fever and antipyretic use in children, Pediatrics, 2011, vol. 127, p. 580.
  7. Jeevagan, A.J. and John, S.A., Electrochemical determination of caffeine in the presence of paracetamol using a self-assembled monolayer of non-peripheral amine substituted copper(II) phthalocyanine, Electrochim. Acta, 2012, vol.77, p. 137.
  8. Li, L., Lu, Y., Ding, Y., Cheng, Y., Xu, W., and Zhang, F., Determination of paracetamol based on its quenching effect on the photoluminescence of CdTe fluorescence probes, J. Fluoresc., 2012, vol. 22, p. 591.
  9. Shiroma, L.Y., Santhiago, M., Gobbi, A.L., and Kubota, L.T., Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device, Anal. Chim. Acta, 2012, vol. 725, p. 44.
  10. Sirajuddin, Khaskheli, A.R., Shah, A., Bhanger, M.I., Niaz, A., and Mahesar, S., Simpler spectrophotometric assay of paracetamol in tablets and urine samples, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2007, vol. 68, p. 747.
  11. Capella-Peiró, M.-E., Bose, D., Rubert, M.F., and Esteve-Romero, J., Optimization of a capillary zone electrophoresis method by using a central composite factorial design for the determination of codeine and paracetamol in pharmaceuticals, J. Chromatography B, 2006,vol. 839, p. 95.
  12. Knochen, M., Giglio, J., and Reis, B.F., Flow-injection spectrophotometric determination of paracetamol in tablets and oral solutions, J. Pharmaceut. and Biomed. Analysis, 2003, vol. 33, p. 191.
  13. Yousefinejad, S. and Hemmateenejad, B., Simultaneous spectrophotometric determination of paracetamol and para-aminophenol in pharmaceutical dosage forms using two novel multivariate standard addition methods based on net analyte signal and rank annihilation factor analysis, Drug Testing Anal., 2012, vol. 4, p. 507.
  14. Franeta, J.T., Agbaba, D., Eric, S., Pavkov, S., Aleksic, M., and Vladimirov, S., Il Farmaco HPLC assay of acetylsalicylic acid, paracetamol, caffeine and phenobarbital in tablets, Farmaco, 2002, vol. 57, p. 709.
  15. Moreira, A.B., Oliveira, H.P.M., Atvars, T.D.Z., Dias, I.L.T., Neto, G.O., Zagatto, E.A.G., and Kubota, L.T., Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy, Anal. Chim. Acta, 2005, vol. 539, p. 257.
  16. Saraswathyamm, B., Grzybowsk, I., Orlewsk, C., Radecki, J., Dehaen, W., Kumar, K.G., and Radecka, H., Electroactive dipyrromethene-Cu(II) monolayes deposited onto Au electrode for voltammetric determination of paracetamol, Electroanalysis, 2008, vol. 20, p. 2317.
  17. Baranowska, I. and Koper, M., The preliminary studies of electrochemical behavior of paracetamol and its metabolites on glassy carabon electrode by voltammetric method, Electroanalysis, 2009, vol. 21, p. 1194.
  18. L, B.C., Medeiros, R.A., Rocha-Filho, R.C., Mazo, L.H., and Fatibello-Filho, O., Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode, Talanta, 2009, vol. 78, p. 748.
  19. Hou, X., Shen, G., Meng, L., Zhu, L., and Guo, M., Multi-walled carbon nanotubes modified glass carbon electrode and its electrocatalytic activity towards oxidation of paracetamol, Russ. J. Electrochem., 2011, vol. 47, p. 1262.
  20. Tayade, S., Patil, K., Sharma, G., Patil, P., Mane, R., Mahulikar, P., and Sharma K.K., Electrochemical investigations of Thymine and Thymidine in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquids at room temperature, Chem. Papers, 2019, vol. 73, p. 2275.
  21. Dalmasso, P.R., Pedano, M.L., and Rivas, G.A., Electrochemical determination of ascorbic acid and paracetamol in pharmaceutical formulations using a glassy carbon electrode modified with multi-wall carbon nanotubes dispersed in polyhistidine, Sens. Actuators B, 2012, vol. 173, p. 732.
  22. Bard A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, John Wiley, New York, 2001.
  23. Kamble, B., Naikwade, M., Garadkar, K. M., Mane, R., Sharma, K., Ajalkar, B., and Tayade, S.N., Ionic liquid assisted synthesis of chromium oxide (Cr2O3) nanoparticles and their application in glucose sensing, J. Mater. Sci.: Materials in Electronics, 2019, vol. 30, p. 13984.
  24. Zhou, H., Chen, J., Huang, T., Chen, D., Wu, Y., Zheng, F., Yu, H., and Li, S., Uniformly distributed and in situ iron–nitrogen co-doped porous carbon derived from pork liver for rapid and simultaneous detection of dopamine, uric acid, and paracetamol in human blood serum, N. J. Chem., 2017, vol. 41, p. 2081.
  25. Y. Veera Manohara Reddy, Sravani, Bathinapatla, Fernandes, Diana M., Ch. Madhuri L. Sarm, Subramanyam, and Madhavi, G., Facile one pot synthesis of bimetallic Pd–Ag/reduced graphene oxide nanocomposite as an electrochemical sensor for sensitive detection of antihypotensive drug, Colloids and Surfaces A, 2018, vol. 546, p. 293.
  26. Velevska, Julijan, Stojanov, Nace, Pecovska-Gjorgjevich, Margareta, and Najdoski, Metodija, Electrochromism in tungsten oxide thin films prepared by chemical bath deposition, J. Electrochem. Sci. Eng., 2017, vol.7, p. 27.
  27. Danga, Dai, Zhao, Bote, Chen, Dongchang, deGlee, Ben M., Qu, Chong, Daia, Shuge, Zeng, Xiaoyuan, Liu, Jing, Lu, Yunfeng, Liao, Shijun, and Liu, Meilin, A bi-functional WO3-based anode enables both energy storage and conversion in an intermediate-temperature fuel cell, Energy Storage Materials, 2018, vol. 12, p. 79.
  28. Simchi, H., McCandless, B.E., Meng, T., and Shafarman, W.N., Structural, optical, and surface properties of WO3 thin films for solar cells, J. Alloys and Compounds, 2014, vol. 617, p. 609.
  29. Hunge, Y.M., Mahadik, M.A., Moholkar, A.V., and Bhosale, C.H., Photoelectrocatalytic degradation of phthalic acid using spray deposited stratified WO3/ZnO thin films under sunlight illumination, Appl. Surface Sci., 2017, vol. 420, p. 764.
  30. Anitha, A.C., Lavanya, N., Asokan, K., and Sekar, C., WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid, Electrochim. Acta, 2015, vol. 167, p. 294.
  31. Breedon, Michael, Spizzirri, Paul, Taylor, Matthew, du Plessis, Johan, McCulloch, Dougal, Zhu, Jianmin, Yu, Leshu, Hu, Zheng, Rix, Colin, Wlodarski, Wojtek, and Kalantar-zadeh, Kourosh, Synthesis of Nanostructured Tungsten Oxide Thin Films: A Simple, Controllable, Inexpensive, Aqueous Sol–Gel Method, Crystal Growth Design Article, 2010, vol. 10, P. 430.
  32. Poongodi, S., Suresh Kumar, P., Masud, Yoshitake, Mangalaraj, D., Ponpandiana, N., Viswanathan, C., and Ramakrishna, Seeram, Synthesis of Hierarchical WO3 nanostructured thin films with enhanced electrochromic performance for switchable smart windows, RSC Adv., 2015, vol. 5, p. 96416.
  33. Ifeanyichukwu, Amaechi, Assumpta, Nwanya, Paul U. Asogwa, Rose U. Osuji, Malik Maaza, and Fabian I. Ezema, Hall Coefficient Determination and Electrical Properties of Chemical Bath-Deposited n-WO3 Thin Films, J. Elecctronic Materials, 2015, vol. 44, p. 1110.
  34. Rashad, M.M. and Shalam, A.E., Hydrothermal synthesis of hierachical WO3 nanostructures for dye sensitized solar cell, Appl. Phys. A, 2014, vol. 116, p. 781.
  35. Mathuri, S., Margoni, Mudaliar Mahesh, Ramamurthi, K., Ramesh Babu, R., and Ganesh, V., Hydrothermal assisted growth of vertically aligned platelet like structures of WO3 films on transparent conducting FTO substrate for electrochromic performance, Appl. Surface Sci., 2018, vol. 449, p. 77.
  36. Alaa A.A. Aljabali, J. Elaine Barclay, Jule N. Butt, George P., Lomonossoffa and David J. Evans, Redox-active ferrocene-modified Cowpea mosaic virus nanoparticles, Dalton Trans., 2010, vol. 39, p. 7569.
  37. Díaz-Reyes, J., Dorantes-García, V., Pérez-Benítez, A., and Balderas-López, A., Obtaining of films of tungsten trioxide (WO3) by resistive heating of a tungsten filament, Superficies y Vacío, June 2008, vol. 21, p. 12.
  38. Reddaiah, K., Madhusudana Reddy, T., and Raghu, P., Electrochemical investigation of L dopa and simultaneous resolution in the presence of uric acid and ascorbic acid at a poly (methyl orange) film coated electrode: A voltammetric study, J. Electroanal. Chem., 2012, vol. 682, p. 164.
  39. Madhusudana Reddy, T., Sreedhar M., and Reddy, S.J., Voltammetric behavior of Cefixime and Cefpodoxime Proxetil and determination in pharmaceutical formulations and urine, J. Pharm. Biomed. Anal., 2003, vol. 31, p. 811.
  40. Habibi, B., Jahanbakhshi, M., and Pournaghi-Azar, M.H., Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon–ceramic electrode by differential pulse voltammetry, Electrochim. Acta, 2011, vol. 56, p. 2888.
  41. Alothman, Z.A., Bukhari, N., Wabaidur, S.M., and Haider, S., Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode, Sens. Actuators B, 2010, vol. 146, p. 314.
  42. Kang, X., Wang, J., Wu, H., Liu, J., Aksay, I.A., and Lin, Y., A graphene-based electrochemical sensor for sensitive detection of paracetamol, Talanta, 2010, vol. 8, p. 754.
  43. ShangGuan, X., Zhang, H., and Zheng, J., Electrochemical behavior and differential pulse voltammetric determination of paracetamol at a carbon ionic liquid electrode, Anal. Bioanal. Chem., 2008, vol. 391, p. 1049.
  44. Lourenc, B.C., Medeiros, R.A., Rocha-Filho, R.C., Mazo, L.H., and Fatibello-Filho, O., Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode, Talanta, 2009, vol. 78, p. 748.
  45. Koprowski, L., Kirchmann, E., and Welch, L.E., The electrochemical oxidation of penicillins on gold electrodes, Electroanalysis, 1993, vol. 5, p. 473.
  46. Karikalan, N., Karthik, R., Chen, S.-M., Velmurugan, M., and Karuppiah, C., Electrochemical properties of the acetaminophen on the screen printed carbon electrode towards the high performance practical sensor applications, J. Colloid Interface Sci., 2016, vol. 483, p. 109.
  47. Ibáñez-Redín, G., Wilson, D., Gonçalves, D., and Oliveira Jr., O.N., J. Colloid and Interface Sci., 2018, vol. 515, p. 101.
  48. Bernal, Valentina, Erto, Alessandro, Giraldo, Liliana, and Moreno-Piraján, Juan Carlos, Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons, Molecules, 2017, vol. 22, p. 1032.
  49. Raoof, B., Ojani, R., and Mohammadpour, Z., Electrocatalytic Oxidation and Voltammetric Determination of Hydrazine by 1,1-Ferrocenedicarboxylic Acid at Glassy Carbon Electrode, Int. J. Electrochem. Sci., 2010, vol. 5, p. 177.
  50. Narayana, P. V., Madhusudana Reddy, T., Gopala, P., and Naidu, G. R., Electrochemical sensing of paracetamol and its simultaneous resolution in the presence of dopamine and folic acid at a multi-walled carbon nanotubes/poly(glycine) composite modified electrode, Anal. Methods, 2014, vol. 6, p. 9459.