Examples



mdbootstrap.com



 
Статья
2018

Electrosynthesis of Н2О2 from О2 in a Gas-Diffusion Electrode Based on Mesostructured Carbon CMK-3


V. L. Kornienko V. L. Kornienko , G. A. Kolyagin G. A. Kolyagin , G. V. Kornienko G. V. Kornienko , V. A. Parfenov V. A. Parfenov , I. V. Ponomarenko I. V. Ponomarenko
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518030060
Abstract / Full Text

Mesostructured carbon CMK-3 (Carbon Mesostructured by KAIST) synthesized by the template method is studied as the electrocatalyst for electrosynthesis of Н2О2 from О2 in a gas-diffusion electrode (GDE) in alkaline and acidic solutions. The texture characteristics of the original material and its mixture with hydrophobizer (polytetrafluoroethylene) are studied by the method of low-temperature nitrogen adsorption. The rate constants for hydrogen peroxide decomposition on these materials in alkaline and acidic solutions are calculated. Kinetic parameters of oxygen reduction in alkaline and acidic solutions are determined as well as the capacitance of gas-diffusion electrodes based on mesocarbon. The selectivity of the electrocatalyst is estimated by finding the current fracture γ consumed in oxygen reduction to hydrogen peroxide. Data on the kinetics of hydrogen peroxide accumulation during electrosynthesis of Н2О2 from О2 are obtained. The acidic solution of hydrogen peroxide with the concentration more than 3 M is obtained with the current efficiency higher than 80%.

Author information
  • Institute of Chemistry and Chemical Technology, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, bld. 24, Krasnoyarsk, 660036, Russia

    V. L. Kornienko, G. A. Kolyagin, G. V. Kornienko, V. A. Parfenov & I. V. Ponomarenko

  • Reshetnev Siberian State Aerospace University, pr. Mira 82, Krasnoyarsk, 660049, Russia

    G. V. Kornienko

References
  1. Solyanikova, A.S., Chayka, M.Yu., Boryak, A.V., Kravchenko, T.A., Glotov, A.V., Ponomarenko, I.V., and Kirik, S.D., Composite electrodes of electrochemical capacitors based on carbon materials with different structure, Russ. J. Electrochem., 2014, vol. 50, p. 419
  2. Li, H., Xi, H., Zhu, S., and Wang, R., Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon, Microporous Mesoporous Mater., 2006, vol. 96, p. 357.
  3. Xing, W., Qiao, S.Z., Ding, R.G., Li, F., Lu, G.Q., Yan, Z.F., and Cheng, H.M., Superior electric double layer capacitors using ordered mesoporous carbons, Carbon, 2006, vol. 44, p. 216.
  4. Lei, Z., Bai, D., and Zhao, X.S., Improving the electro capacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping, Microporous Mesoporous Mater., 2012, vol. 147, p. 86.
  5. Ponomarenko, I.V., Solyanikova, A.S., Chayka, M.Yu., Parfenov, V.A., Kirik, S.D., and Kravchenko, T.A., Activation of mesostructured electrode materials for electrochemical capacitors, Russ. J. Electrochem., 2015, vol. 51, p. 764.
  6. Zhang, H., Tao, H., Jiang, Y., Jiao Z., Wu, M., and Zhao, B., Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries, J. Power Sources., 2010, vol. 195, p. 2950.
  7. Huwe, H. and Froba, M., Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon CMK-3, Carbon, 2007, vol. 45, p. 304.
  8. Prasad, K.R.S., Dhawale, D.S., Joseph, S., Anand, C., Wahab, M.A., Mano, A., Sathish, C.I., Balasubramanian, V.V., Sivakumar, T., and Vinu, A., Post-synthetic functionalization of mesoporous carbon electrodes with copper oxide nanoparticles for supercapacitor application, Microporous Mesoporous Mater., 2013, vol. 172, p. 77.
  9. Kawase, T. and Yoshitake, H., Cathodes comprising Li2MnSiO4 nanoparticles dispersed in the mesoporous carbon frameworks, CMK-3 and CMK-8, Microporous Mesoporous Mater., 2012, vol. 155, p. 99.
  10. Fang, B., Kim, J.H., Kim, M., and Yu, J.-S., Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell, Chem. Mater., 2009, vol. 21, p. 789.
  11. Bhagiyalakshmi, M., Lee, J.Y., and Jang, H. T., Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption, Int. J. Greenhouse Gas Control, 2010, vol. 4, p. 51.
  12. Park, J., Nabae, Y., Hayakawa, T., and Kakimoto M.-a., Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon, ACS Catal., 2014, vol. 4, p. 3749.
  13. Haschéa, F., Oezaslan, M., Strasser, P., and Fellinger, T.-P., Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst, J. Energy Chem., 2016, vol. 25, p. 251.
  14. Shenga, X., Daemsa, N., Geboesc, B., Kurttepelie, M., Balse, S., Breugelmansc, T., Hubinc, A., Vankelecom, I.F.J., and Pescarmona. P.P., N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2, Appl. Catal. B, 2015, vol. 176–177, p. 212.
  15. Perazzolo, V., Durante, C., and Gennaro. A., Nitrogen and sulfur doped mesoporous carbon cathodes for water treatment, J. Electroanal. Chem., 2016, vol. 782, p. 264.
  16. Kornienko, V.L., Kolyagin, G.A., and Saltykov, Yu.V., in Elektrosintez v gidrofobizirovannykh elektrodakh (Electrosynthesis in Hydrophobized Electrodes), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2011.
  17. Kolyagin, G.A. and Kornienko, V.L., Elektrosintez peroksida vodoroda v gazodiffuzionnom elektrode: Dostizheniya i perspektivy (Electrochemical Synthesis of Hydrogen Peroxide in a Gas-Diffusion Electrode: Achievements and Prospects), Lambert Acad., 2011.
  18. Anastas, P.T. and Warner, J.C., Green Chemistry: Theory and Practice, London: Oxford University, 1998.
  19. Noyori, R., Pursuing practical elegance in chemical synthesis, Chem. Commun., 2005, no. 14, p. 1807.
  20. Schumb, W.C., Satterfield, C.N., and Wentworth, R.L., Hydrogen Peroxide, New York: Reinhold, 1955; translated into Russian.
  21. Khimiya i tekhnologiya perekisi vodoroda (Chemistry and Technology of Hydrogen Peroxide), Seryshev, G.A., Ed., Leningrad: Khimiya, 1984.
  22. Pletcher, D., Indirect oxidations using electrogenerated hydrogen peroxide, Acta Chem. Scand., 1999, vol. 53, p. 745.
  23. Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., Chaenko, N.V., Kosheleva, A.M., Kenova, T.A., and Vasil’eva I.S., Use of aqueous hydrogen peroxide solutions prepared by cathodic reduction of oxygen for indirect oxidation of chemical substances in situ: Achievements and prospects, Russ. J. Appl. Chem., 2014, vol. 87, p. 1.
  24. Berl, B.E., A new cathodic process for the production H2O2, Trans. Electrochem. Soc., 1939, vol. 76, p. 359.
  25. Fioshin, M.Y., Uspekhi v oblasti electrosinteza neorganicheskih soedinenii (Advances in Electrosynthesis of Inorganic Compounds), Moscow: Khimiya, 1974.
  26. Kornienko, G.V., Kolyagin, G.A., Kornienko, V.L., and Parfehov, B.A., Graphitized carbon materials for electrosynthesis of H2O2 from O2 in gas-diffusion electrodes, Russ. J. Electrochem., 2016, vol. 52, p. 983.
  27. Vert, Zh. L. and Pavlova, V. F., The effect of temperature on the process of electroreduction of oxygen on hydrophobized electrode in 1 M NaOH, Zh. Prikl. Khim., 1988, vol. 61, p.1148.
  28. Shinae, J., Joo, S.H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., and Terasaki, O. Synthesis of new nanoporous carbon with hexagonally ordered mesostructure, J. Amer. Chem. Soc., 2000, vol. 122, p. 10712.
  29. Ryoo, R., Joo, S.H., Kruk, M., and Jaroniec, M., Ordered mesoporous carbons, Adv. Mater., 2001, vol. 13, no. 9, p. 677.
  30. Zhao, D.Y, Huo, Q.S, Feng, J.L, Chmelka, B.F, and Stucky G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Amer. Chem. Soc., 1998, vol. 120, no. 24, p. 6024.
  31. Zakharkin, G.I., Tarasevich, M.R., and Burshtein, R.H., Studying oxygen and hydrogen peroxide reactions by using O18. IV. Mechanism of hydrogen peroxide decomposition on various carbon materials, Elektrokhimiya, 1974, vol. 10, p. 1811.
  32. Alekseev, V.I., Kolichestvennyi analiz (Quantitative Analysis), Moscow: Khimiya, 1972.
  33. Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., and Parfenov, B.A., Electrosynthesis of H2O2 from O2 in gas-diffusion electrodes on the basis of carbon black CN600. Russ. J. Electrochem., 2017, vol. 53, in press.