Статья
2019

Effect of Silver Vanadate Additions on the Electrochemical Characteristics of the Fluorocarbon Electrode


S. A. Fateev S. A. Fateev , I. A. Putsylov I. A. Putsylov , V. A. Zhorin V. A. Zhorin , S. E. Smirnov S. E. Smirnov , M. V. Negorodov M. V. Negorodov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519060089
Abstract / Full Text

An original method for the synthesis of silver vanadate was developed. It includes mechanical activation of the precursor in the course of plastic deformation on a high-pressure apparatus of the Bridgman anvil type, which is significantly time- and energy-saving. It was shown that the addition of silver vanadate to fluorocarbon improves the electrochemical characteristics of the electrodes, especially in pulsed discharge modes.

Author information
  • Moscow Power Engineering Institute (National Research University) (MEI), 111250, Moscow, Russia

    S. A. Fateev, S. E. Smirnov & M. V. Negorodov

  • Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977, Moscow, Russia

    I. A. Putsylov & V. A. Zhorin

References
  1. Fateev, S.A., Trends in the development of power sources for implantable medical devices, Vestn. Mosk. Energ. Inst., 2018, no. 2, p. 102.
  2. Fateev, S.A., Putsylov, I.A., Smirnov, S.E., and Fomin, D.V., Lithium-fluorocarbon power source for gastroscopy, Elektrokhim. Energ., 2017, vol. 17, no. 3, p. 135.
  3. Egorov, A.M., Putsylov, I.A., Smirnov, S.E., and Fateev, S.A., Effect of mechanical activation on the characteristics of electrodes based on fluorinated carbon nanotubes, Russ. J. Appl. Chem., 2016, vol. 89, no. 3, p. 451.
  4. Egorov, A.M., Putsylov, I.A., Smirnov, S.E., and Fateev, S.A., A study of electrodes based on fluorinated fullerene black, Russ. J. Appl. Chem., 2012, vol. 85, p. 1695.
  5. Shmuel De-Leon (2011) Li/CFx batteries the renaissance. http://www.sdle.co.il/AllSites/810/Assets/li-cfx%20-%20the%20renaissance.pdf. Accessed June 8, 2011.
  6. West, K. and Crespi, A.M., Lithium insertion into silver vanadium oxide Ag2V4O11, J. Power Sources, 1995, vol. 54, p. 334.
  7. Sauvage, F., Bodenez, V., Vezin, H., Morcrette, M., Tarascon, J.-M., and Poeppelmeier, K.R., Structural and transport evolution in the LixAg2V4O11 system, J. Power Sources, 2010, vol. 195, p. 1195.
  8. Meduri, P., Chen, H., Chen, X., Xiao, J., Gross, M.E., Carlson, T.J., Zhang, J.-G., and Deng, D.Z., Hybrid CFx–Ag2V4O11 as a high-energy, power density cathode for application in an underwater acoustic microtransmitter, Electrochem. Commun., 2011, vol. 13, p. 1344.
  9. Takeuchi, E.S. and Leising, R.A., US Patent 6566007, 2003.
  10. Crespi, A.M. and Chen, K., US Patent 5955218, 1999.
  11. Palazzo, M. and Takeuchi, E.S., Silver vanadium oxide having low internal resistance and method of manufacture, EP1220342 A3, 2003.
  12. Takeuchi, E.S. and Palazzo, M., Silver vanadium oxide having low internal resistance and method of manufacture, US6803147 B2, 2004.
  13. Smirnov, S.S., Zhorin, V.A., and Kiselev, M.R., Synthesis and electrochemical properties of lithium-vanadium bronze, Russ. J. Appl. Chem., 2010, vol. 83, p. 1215.
  14. Vorob’ev, I.S., Smirnov, S.S., Smirnov, S.E., and Zhorin, V.A., Synthesis and electrochemical properties of double lithium-titanium phosphate, Russ. J. Appl. Chem., 2014, vol. 87, p. 734.
  15. Vorob’ev, I.S., Zhorin, V.A., Smirnov, K.S., and Smirnov, S.E., Synthesis and electrochemical properties of composite cathode materials, Russ. J. Appl. Chem., 2015, vol. 88, p. 394.
  16. Zlokazov, V.B. and Chernyshev, V.V., MRIA – a program for a full profile analysis of powder multiphase neutron-diffraction time-of-flight (direct and Fourier) spectra, J. Appl. Cryst., 1992, vol. 25, p. 447.