Examples



mdbootstrap.com



 
Статья
2019

Additives for Carbon Monoxide Afterburning in Gases from Regeneration of a Cracking Catalyst without Noble Metals


K. I. DmitrievK. I. Dmitriev, O. V. PotapenkoO. V. Potapenko, T. V. BobkovaT. V. Bobkova, N. N. Leont’evaN. N. Leont’eva, T. P. SorokinaT. P. Sorokina, V. P. DoroninV. P. Doronin
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427219030133
Abstract / Full Text

Additives for diminishing the content of carbon monoxide in gases formed in regeneration of the cracking catalyst without noble metals were synthesized and tested. As additives of this kind can serve mixed oxides based on copper, cerium, magnesium, and aluminum and manganese oxide supported by gamma aluminum oxide. Additives based on mixed oxides possess a high acidity and do not impair the activity of the catalytic system in the cracking reactions. In the efficiency (89.7–95.5%) in lowering the content of carbon monoxide, mixed oxides based on copper and cerium are comparable with the platinum-based additive KO-10 (96.8%). The activity of the additive based on manganese oxide depends on the sample calcination temperature, with the maximum efficiency in lowering the content of carbon monoxide (88.0%) reached at temperatures of 850–920°C.

Author information
  • Institute of Hydrocarbons Processing, Siberian Branch, Russian Academy of Sciences, Omsk, 644040, RussiaK. I. Dmitriev, O. V. Potapenko, T. V. Bobkova, N. N. Leont’eva, T. P. Sorokina & V. P. Doronin
References
  1. Alexeev, O.S., Krishnamoorthy, S., and Jensen, C., Catal. Today, 2007, vol. 127, pp. 189–198.
  2. RF Patent 2 621 350 (publ. 2017).
  3. US Patent 7 959 792 (publ. 2011).
  4. US Patent 6 596 249 (publ 2003).
  5. Zagainov, I.V., Trusova, E.A., and Liberman, E.Yu., Usp. Khim. Tekhnol., 2010, vol. 24, no. 9, pp. 67–71.
  6. Aguilera, D., Perez, A., Molina, R., and Moreno, S., Stud. Surf. Sci. Catal., 2010, vol. 175, pp. 513–516.
  7. Christopher, J., Kieran, J., and Stuart, H., J. Mol. Catal. A: Chem., 2009, vol. 305, pp. 121–124.
  8. Hutchings, G.J., Mirzaei, A., and Joynerb, R., Appl. Catal., A, 1998, vol. 166, pp. 143–152.
  9. Haijun, Z., Kegong, F., and Dong, F., J. Ind. Eng. Chem., 2017, vol. 54, pp. 117–125.
  10. Bahrami, S., Niaei, A., and JoseIllan-Gomez, M., J. Environ. Chem. Eng., 2017, vol. 5, no. 5, pp. 4937–4947.
  11. Xiao-man Zhanga, Ya-Qing Denga, and Pengfei Tiana, Appl. Catal., B, 2016, vol. 191, pp. 179–191.
  12. Madras, G., J. Mol. Catal. A: Chem., 2016, vol. 424, pp. 106–114.
  13. Xiaodong, Z., Hongxin, L., and Yang, Y., J. Environ. Chem. Eng., 2017, vol. 5, pp. 5179–5186.
  14. Tsirul’nikov, P.G., Ross. Khim. Zh., 2007, vol. LI, no. 4, pp. 133–139.
  15. Bulavchenko, O.A., Afonasenko, T.N., and Tsyrul’nikov, P.G., Kinet. Catal., 2014, vol. 55, no. 5, pp. 639–648.
  16. RF Patent 2 063 803 (publ. 1996).
  17. RF Patent 2 365 408 (publ. 2009).
  18. Karthikeyani, A.V., Anantharaman, N.A., Prabhu, K.M., and Ramakumar, S.S.V., Int. J. Hydrogen Ener gy, 2017, vol. 42, no. 42, pp. 26529–26544.
  19. Climent, M.J., Corma, A., Iborra, S., Epping, K., and Velty, A., J. Catal., 2004, vol. 225, pp. 316–326.
  20. Polato, C.M., Henriques, C.A., Rodrigues, A.C., and Monteiro, J.L., Catal. Today, 2008, vol. 133, pp. 534–550.
  21. Coughlan, B. and Keane, M.A., Zeolites, 1991, vol. 11, no. 8, pp. 854–857.