A Novel Method for the Polarographic Determination of Trace Nitrite in Water

Y. S. TianY. S. Tian, X. H. LiX. H. Li, D. F. ZhangD. F. Zhang, L. LuL. Lu, Y. G. XuY. G. Xu, C. W. AnC. W. An
Российский электрохимический журнал
Abstract / Full Text

A method for polarographic determination of nitrites in water is developed. Nitrites firstly react with resorcinol, then the nitroso product reacts with nickel ion to form a complex, which can be reduced on dropping mercury electrode to produce a sensitive polarographic wave. The current signal has an excellent linear relation with the concentration of nitrite, the detection limit was 0.22 μg/L. The relative standard deviation is 2.80% and the recoveries were 95.0–102.9% at a nitrite concentration of 1.13 μg/L, most of the potential interferents are tolerated. The method is suitable for the determination of trace nitrite in water.

Author information
  • School of Biomedical and Chemical Engineering, Liaoning Institute of Science and Technology, 117004, Benxi, Liaoning, PR China

    Y. S. Tian, X. H. Li, D. F. Zhang, Y. G. Xu & C. W. An

  • College of Environmental Science and Engineering, Guilin University of Technology, 541004, Guilin, Guangxi, PR China

    L. Lu

  1. Chan, T.Y.K., Food-borne nitrates and nitrites as a cause of methemoglobinemia, Southeast Asian J. Trop. Med. Public Health, 1996, vol. 27, p. 189.
  2. Fahey, J.M. and Isaacson, R.L., Pretreatmenteffects on nitrite-induced methemoglobinemia-saline and calcium-channel antagonists, Pharmacol. Biochem. Behav., 1990, vol. 37, p. 457.
  3. Olajos, E.J. and Coulston, F., Comparative toxicology of N-nitroso compounds and their carcinogenic potential to man, Ecotoxicol. Environ. Saf., 1978, vol. 2, p. 317.
  4. Suzuki, H., Iijima, K., and Moriya, A., Conditions for acid catalysed luminal nitrosation are maximal at the gastric cardia, Gut, 2003, vol. 52, p. 1095.
  5. Jongen, W.M.F., Glucosinolates in Brassica: occurrence and significance as cancer-modulating agents, Proc. Nutr. Soc., 1996, vol. 55, p. 433.
  6. WHO. Guidelines for Drinking-Water Quality, 4th ed., World Health Organization, 2011, pp. 398–403.
  7. Singh, P., Beg, Y.R., and Nishad, G.R., A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples, Talanta, 2018, vol. 191, p. 364.
  8. Wang, Q., Huang, H., Ning, B., Li, M., and He, L., A highly sensitive and selective spectrofluorimetric method for the determination of nitrite in food products, Food. Anal. Methods, 2016, vol. 9, p. 1293.
  9. Wu, J., Wang, X., Lin, Y.T., Zheng, Y., and Lin, J.M., Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on microfluidic chip, Talanta, 2016, vol. 154, p. 73.
  10. Gill, A., Zajda, J., and Meyerhoff, M.E., Comparison of electrochemical nitric oxide detection methods with chemiluminescence for measuring nitrite concentration in food samples, Anal. Chim. Acta, 2019, vol. 1077, p. 167.
  11. Costa, R.B., Camiloti, P.R., Sabatini, C.A., Dos Santos, C.E.D., Lima Gomes, P.C.F., and Adorno, M.A.T., Matrix effect assessment of an ion chromatographic method to determine inorganic anions in wastewater, Water Air Soil Pollut., 2018, vol. 229, p. 212.1.
  12. Zhang, S.X., Peng, R., Jiang, R., Chai, X.S., and Barnes, D.G., A high-throughput headspace gas chromatographic technique for the determination of nitrite content in water samples, J. Chromatogr. A, 2018, vol. 1538, p. 104.
  13. Kalaycioglu, Z. and Erim, F.B., Simultaneous determination of nitrate and nitrite in fish products with improved sensitivity by sample stacking-capillary electrophoresis, Food Anal. Methods, 2016, vol. 9, no. 3, p. 706.
  14. Moravský, L., Troška, P., Klas, M., Marián,M., and Matejcík, S., Determination of nitrites and nitrates in plasma-activated deionized water by microchip capillary electrophoresis, Contrib. Plasma Phys., 2020, vol. 60, no. 7, p. e202000014.
  15. Zhao, Y.L., Zhao, D.A., and Li, D.L., Electrochemical and other methods for detection and determination of dissolved nitrite: a review, Int. J. Electrochem. Soc., 2015, vol. 10, no. 2, p. 1144.
  16. Wang, Q.H., Yu, L.J., Liu, Y., Lin, L., Lu, R.G., Zhu, J.P., He, L., and Lu, Z.L., Methods for the detection and determination of nitrite and nitrate: areview, Talanta, 2017, vol. 165, p. 709.
  17. Mao, Y., Bao, Y., Han, D.X., and Zhao, B., Research progress on nitrite electrochemical sensor, Chin. J. Anal. Chem., 2018, vol. 46, no. 2, p. 147.
  18. Moorcroft, M.J., Davis, J., and Compton, R.G., Detection and determination of nitrate and nitrite: a review, Talanta, 2001, vol. 54, no. 5, p. 785.
  19. Sharma, P. and Sharma, R., Sequential trace determination of nitrate and nitrite in natural waters by differential pulse polarography, Int. J. Environ. Anal. Chem., 2002, vol. 82, no. 1, p. 7.
  20. Yilmaz, U.T. and Somer, G., Determination of trace nitrite by direct and indirect methods using differential pulse polarography and application, J. Electroanal. Chem., 2008, vol. 624, p. 59.
  21. Fieser, L.F. and Fieser, M., Advanced Organic Chemistry, New York: Reinhold, 1961.
  22. Gabbay, J., Almog, Y., and Davidson, M., Rapid spectrophotometric microdetermination of nitrites in water, Analyst, 1977, vol. 102, p. 371.
  23. Li, X., Zou, N., Wang, Z.X., Sun, Y.L., Li, H.Y., Gao, C.P., Wang, T., and Wang, X.L., An electrochemical sensor for determination of nitrite based on Au nanoparticles decorated MoS2 nanosheets, Chem. Pap., 2020, vol. 74, no. 2, p. 441.
  24. Lei, H., Zhu, H., Sun, S.H., Zhu, Z.F., Hao, J.C., Lu, S.L., Cai, Y.R., Zhang, M., and Du, M.L., Synergistic integration of Au nanoparticles, Co-MOF and MWCNT as biosensors for sensitive detection of low-concentration nitrite, Electrochim. Acta, 2021, vol. 365, p. 137375.
  25. Wang, Y.H., Zeng, Z.X., Qiao, J.Y., Dong, S.Q., Liang, Q., and Shao, S.J., Ultrasensitive determination of nitrite based on electrochemical platform of AuNPs deposited on PDDA-modified MXene nanosheets, Talanta, 2021, vol. 221, p. 121605.
  26. Xu, H., Peng, J.C., Zhu, M.T., and Liu, J.S., Ultrasensitive detection of nitrite based on gold-nanoparticles/polyrhodamine B/carbon nanotubes modified glassy carbon electrode with enhanced electrochemical performance, Int. J. Electrochem. Sci., 2017, vol. 12, no. 11, p. 10642.
  27. Wu, S.S., Yin, Z.Z., Chen, X.H., Wang, X.Q., Wu, D.T., and Kong, Y., Electropolymerized melamine for simultaneous determination of nitrite and tartrazine, Food Chem., 2020, vol. 333, p. 127532.
  28. Asiri, A.M., Adeosun, W.A., and Rahman, M.M., Development of highly efficient non-enzymatic nitrite sensor using La2CuO4 nanoparticles, Microchem. J., 2020, vol. 159, p. 105527.
  29. Annalakshmi, M., Balaji, R., Chen, S.M., Chen, T.W., and Huang, Y.C., A sensitive and high-performance electrochemical detection of nitrite in water samples based on sonochemical synthesized strontium ferrite nanochain architectures, Electrochim. Acta, 2020, vol. 360, p. 136797.
  30. Shen, Y.L., Ma, C., Zhang, S.P., Li, P.C., Zhu, W.Q., Zhang, X.M., Gao, J.J., Song, H.O., Chen, D.Z., Pang, D., and Li, A.M., Nanosilver and protonated carbon nitride co-coated carbon cloth fibers based non-enzymatic electrochemical sensor for determination of carcinogenic nitrite, Sci. Total Environ., 2020, vol. 742, p. 140622.
  31. Liu, L., Cui, H., An, H., Zhai, J.Z., and Pan, Y., Electrochemical detection of aqueous nitrite based on poly(aniline-co-o-aminophenol)-modified glassy carbon electrode, Ionics, 2017, vol. 23, p. 1517.
  32. Lei, P., Zhou, Y., Zhu, R.Q., Wu, S., Jiang, C.B., Dong, C., Liu, Y., and Shuang, S.M., Gold nanoparticles decorated bimetallic CuNi-based hollow nanoarchitecture for theenhancement ofelectrochemical sensing performance of nitrite, Microchim. Acta, 2020, vol. 187, p. 572.
  33. Stozhko, N.Y., Bukharinova, M.A., Khamzina, E.I., Tarasov, A.V., and Sokolkov, S.V., Film carbon veil-based electrode modified with Triton X-100 for nitrite determination, Chemosensors, 2020, vol. 8, no. 3, p. 78.
  34. Ding, S., Tan, Y., and Zhang, Z., Investigation on polarography with linearly changing potential XIII on the general theory for the adsorptive-complex wave, Acta Chim. Sin., 1991, vol. 4, p. 400.