Methanol Electrooxidation on PtM/C (M = Ni, Co) and Pt/(SnO2/C) Catalysts

V. S. Menshchikov V. S. Menshchikov , S. V. Belenov S. V. Belenov , V. E. Guterman V. E. Guterman , I. N. Novomlinskiy I. N. Novomlinskiy , A. K. Nevel’skaya A. K. Nevel’skaya , A. Yu. Nikulin A. Yu. Nikulin
Российский электрохимический журнал
Abstract / Full Text

We investigate the activity of bimetallic PtM/C (M = Ni, Co) catalysts with different microstructures and platinum catalysts supported on a nanostructured composite carrier (SnO2/C) in the electrooxidation reaction of methanol. For bimetallic catalysts, the effect of heat treatment on their structural and functional characteristics is also studied. Among bimetallic catalysts in the as-obtained state, the Pt@Ni/C catalyst prepared by the subsequent reduction of nickel and platinum from solutions of their compounds exhibited the highest activity in the methanol electrooxidation, significantly exceeding that for the commercial Pt/C product. Heat treatment at 350°C increased the activity of the PtCo/C catalyst containing nanoparticles of a solid solution but adversely affected the tolerance of all the studied bimetallic catalysts to the intermediate products of methanol oxidation. All the studied Pt/(SnO2/C) materials demonstrated a higher mass activity in the electrooxidation reaction of methanol compared to commercial Pt/C and bimetallic systems, while the catalyst with a weight fraction of platinum of 12% and a molar ratio of Pt: SnO2 of 1: 1.1 showed the highest mass activity.

Author information
  • Department of Chemistry, South Federal University, Rostov-on-Don, 344090, Russia

    V. S. Menshchikov, S. V. Belenov, V. E. Guterman, I. N. Novomlinskiy, A. K. Nevel’skaya & A. Yu. Nikulin

  1. Costamagna, P. and Srinivasan, S., Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects, J. Power Sources, 2001, vol. 102, p. 242.
  2. Decoopman, B., Vincent, R., Rosini, S., Paganelli, G., and Thivel, P.-X., Proton exchange membrane fuel cell reversible performance loss induced by carbon monoxide produced during operation, J. Power Sources, 2016, vol. 324, p. 492.
  3. Sayadi, A. and Pickup, G., Evaluation of methanol oxidation catalysts by rotating disc voltammetry, Electrochimica Acta, 2016, vol. 199, p. 12.
  4. Childers, C.L., Huang, H., and Korzeniewski, C., Formaldehyde yields from methanol electrochemical oxidation on carbon-supported platinum catalysts, Langmuir, 1999, vol. 15, p. 786.
  5. Jusys, Z., Kaiser, J., and Behm, R.J., Methanol electro-oxidation over Pt/C fuel cell catalysts: Dependence of product yields on catalyst loading, Langmuir, 2003, vol. 19, p 6759.
  6. Banham, D.W. and Ye, S., Current status and future development of catalyst materials and catalyst layers for PEMFCs: An industrial perspective, ACS Energy Lett., 2017, vol. 2, p. 629.
  7. Cui, C.H., Li, H.H., and Yu, S.H., Large scale restructuring of porous Pt–Ni nanoparticle tubes for methanol oxidation: A highly reactive, stable, and restorable fuel cell catalyst, Chem. Sci., 2011, vol. 2, p. 1611.
  8. Jeon, M.K., Zhang, Y., and McGinn, P.J., A Comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electroreduction reaction, Electrochimica Acta, 2010, vol. 55, p. 5318.
  9. Chen, M., Lou, B., Ni, Z., Xu, B., PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell, Electrochimica Acta, 2015, vol. 165, p. 105.
  10. Ma, X., Luo, L., Zhu, L., Yu, L., Sheng, L., An, K., Ando, Y., and Zhao, X., Pt–Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation, J. Power Sources, 2013, vol. 241, p. 274.
  11. Xu, C., Liu, Y., Wang, J., Geng, H., and Qiu, H., Fabrication of nanoporous Cu–Pt(Pd) core/shell Structure by galvanic replacement and its application in electrocatalysis, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 4626.
  12. Wang, M., Zhang, W., Wang, J., Minett, A., Lo, V., Liu, H., and Chen, J., Mesoporous hollow PtCu nanoparticles for electrocatalytic oxygen reduction reaction, J. Mater. Chem. A, 2013, vol. 1, p. 2391.
  13. Sarkar, A. and Manthiram, A., Synthesis of Pt@Cu core–shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells, J. Phys. Chem. C, 2010, vol. 114, p. 4725.
  14. Smirnova, N.V., Kuriganova, A.B., Leont’eva, D.V., Leont’ev, I.N., and Mikheikin, A.S, Structural and electrocatalytic properties of Pt/C and Pt–Ni/C catalysts prepared by electrochemical dispersion, Kin. Catal., 2013, vol. 54, no. 2, p. 255.
  15. Ozoemena, K.I. and Chen, S., Nanomaterials for Fuel Cell Catalysis, Ser.: Nanostructure Science and Technology, Lockwood, D.J., Ed., Springer, 2016.
  16. Hartl, K., Mayrhofer, K.J.J., Lopez, M., Goia, D., and Arenz, M., AuPt core–shell nanocatalysts with bulk Pt activity, Electrochem. Commun., 2010, vol. 12, p. 1487.
  17. Zeng, J., Yang, J., Lee, J.Y., and Zhou, W., Preparation of carbon-supported core–shell Au–Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core, J. Phys. Chem. B, 2006, vol. 110, p. 24606.
  18. Luo, J., Maye, M.M., Lou, Y., Han, L., Hepel, M., and Zhong, C.J., Catalytic activation of core–shell assembled gold nanoparticles as catalyst for methanol electro-oxidation, Catal. Today, 2002, vol. 77, p. 127.
  19. Fu, X.-Z., Liang, Y., Chen, S.-P., Lin, J.-D., and Liao, D.-W., Pt-rich shell coated Ni nanoparticles as catalysts for methanol electro-oxidation in alkaline media, Catal. Commun., 2009, vol. 10, p. 1893.
  20. Zhang, Y., Ma, C., Zhu, Y., Si, R., Cai, Y., Wang, J.X., and Adzic, R.R., Hollow core supported Pt monolayer catalysts for oxygen reduction, Catal. Today, 2013, vol. 202, p. 50.
  21. Bae, S.J., Yoo, S.J., Lim, Y., Kim, S., Lim, Y., Choi, J., Nahm, K.S., Hwang, S.J., Lim, T.H., Kim, S.K., and Kim, P., Facile preparation of carbon-supported PtNi hollow nanoparticles with high electrochemical performance, J. Mater. Chem., 2012, vol. 22, p 8820.
  22. Xu, C., Hu, Y., Rong, J., Jiang, S.P., and Liu, Y., Ni hollow spheres as catalysts for methanol and ethanol electro-oxidation, Electrochem. Commun., 2007, vol. 9, p. 2009.
  23. Zhang, C., Zhu, A., Huang, R., Zhang, Q., and Liu, Q., Hollow nanoporous Au/Pt core–shell catalysts with nanochannels and enhanced activities towards electro-oxidation of methanol and ethanol, Int. J. Hydrogen Energy, 2014, vol. 39, p. 8246.
  24. Lasch, K., Hayn, G., Jorissen, L., Garche, J., and Besenhardt, O., Mixed conducting catalyst support materials for the direct methanol fuel cell, J. Power Sources, 2002, vol. 105, p. 305.
  25. Frolova, L., Lyskov, N., and Dobrovolsky, Yu., Nanostructured Pt/SnO2–SbOx–RuO2 electrocatalysts for direct alcohol fuel cells, Solid State Ionics, 2012, vol. 225, p. 92.
  26. Kuriganova, A.B. and Smirnova, N.V., Pt/SnOx–C composite material for electrocatalysis, Mendeleev Commun., 2014, vol. 24, p. 351.
  27. Higuchi, E., Miyata, K., Takase, T., and Inoue, H., Ethanol oxidation reaction activity of highly dispersed Pt/SnO2 double nanoparticles on carbon black, J. Power Sources, 2011, vol. 196, p. 1730.
  28. Odetola, C., Trevani, L., and Easton, E.B., Enhanced activity and stability of Pt/TiO2/carbon fuel cell electrocatalyst prepared using a glucose modifier, J. Power Sources, 2015, vol. 294, p. 254.
  29. Handbook of Fuel Cells: Fundamental, Technology, and Applications, Vielstich, W., Lamm, A. and Gasteiger, H.A., Eds., Chichester: Wiley, 2003.
  30. Liao, S., Holmes, K.-A., Tsaprailis, H., and Birss, V.I., High performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol, J. Am. Chem. Soc., 2006, vol. 128, p. 3504.
  31. Bezerra, C.W., Zhang, L., Liu, H., Lee, K., Marques, A.L., Marques, E.P., Wang, H., and Zhang, J., A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction, J. Power Sources, 2007, vol. 173, p. 891.
  32. Han, M., Zeng, J., Xia, J., and Liao, S., Effect of thermal treatment on structural change of anode electrocatalysts for direct methanol fuel cells, Particuology, 2014, vol. 15, p. 45.
  33. Zou, L., Fan, J., Zhou, Y., Wang, C., Li, J., Zou, Z., and Yang, H., Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res., 2015, vol. 8, p. 2777.
  34. Han, B.H., Carlton, C.E., Kongkanand, A., Kukreja, R.S., Theobald, B.R., Gan, L., O’Malley, R., Strasser, P., Wagner, F.T., and Shao-Horn, Y., Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells, Energy Environ. Sci., 2015, vol. 8, p. 258.
  35. Do, C.L., Pham, T.S., Nguyen, N.P., Tran, V.Q., and Pham, H.H., Synthesis and characterization of alloy catalyst nanoparticles PtNi/C for oxygen reduction reaction in proton exchange membrane fuel cell, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2015, vol. 6, p. 6.
  36. Wang, D., Xin, H.L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., Di Salvo, F.J., and Abruña, H.D., Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, Nat. Mater., 2013, vol. 12, p. 81.
  37. Guterman, V.E., Pustovaya, L.E., Guterman, A.V., and Vysochina, L.L. Borohydride synthesis of the Ptx–Ni/C electrocatalysts and investigation of their activity in the oxygen electroreduction reaction, Russ. J. Electrochem., 2007, vol. 43, p. 1091.
  38. Guterman, A.V., Pakhomova, E.B., Guterman, V.E., Kabirov, Y.V., and Grigor’ev, V.P., Synthesis of nanostructured PtxNi/C and PtxCo/C catalysts and their activity in the reaction of oxygen electroreduction, Inorg. Mater., 2009, vol. 45, p. 767.
  39. Belenov, S.V., Volochaev, V.A., Pryadchenko, V.V., Srabionyan, V.V., Shemet, D.B., Tabachkova, N.Y., and Guterman, V.E., Phase behavior of Pt–Cu nanoparticles with different architecture upon their thermal treatment, Nanotechnol. Russ., 2017, vol. 12, nos. 3–4, p. 147.
  40. Novomlinsiy, I.N., Guterman, V.E., Danilenko, M.V., and Volochaev, V.A., Platinum electrocatalysts supported on a composite oxide-carbon carrier, Russ. J. Electochem. (in press).
  41. Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Belenov, S.V., Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C catalysts, Inorg. Mater., 2015, vol. 51, no. 12. p, 1258.
  42. Pryadchenko, V.V., Srabionyan, V.V., Kurzin, A.A., Bulat, N.V., Shemet, D.B., Avakyan, L.A., Belenov, S.V., Volochaev, V.A., Zizak, I., Guterman, V.E., and Bugaev, L.A., Bimetallic PtCu core–shell nanoparticles in PtCu/C electrocatalysts: Structural and electrochemical characterization, Appl. Catal. A, 2016, vol. 525, p. 226.
  43. Guterman, V.E., Belenov, S.V., Pakharev, A.Yu., Min, M., Tabachkova, N.Yu., Mikheykina, E.B., Vysochina, L.L., and Lastovina, T.A., Pt–M/C (M = Cu, Ag) electrocatalysts with an inhomogeneous distribution of metals in the nanoparticles, Int. J. of Hydrogen Energy, 2016, vol. 41, p. 1609.
  44. Brugeman, S.A., Zekhtor, M.Yu., and Novikovskiy, N.M., “Universal Roentgen Spectra” (UniveRS), Certificate of state registration of the computer program no. 2010615318, 2010.
  45. Guterman, V.E., Belenov, S.V., Lastovina, T.A., Fokina, E.P., Prutsakova, N.V., and Konstantinova, Y.B., Microstructure and electrochemically active surface area of PtM/C electrocatalysts, Russ. J. of Electrochemistry, 2011, vol. 47, p. 933.
  46. Ji. J., Wang, H., Ji, S., Yang, H., Li, X., and Wang, R., SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction, Electrochim. Acta, 2014, vol. 141, p. 13.