Electrooxidation of hydrogen at Pt/carbon nanotube catalysts for hydrogen–air fuel cell

O. V. KorchaginO. V. Korchagin, N. M. ZagudaevaN. M. Zagudaeva, M. V. RadinaM. V. Radina, V. A. BogdanovskayaV. A. Bogdanovskaya, M. R. TarasevichM. R. Tarasevich
Российский электрохимический журнал
Abstract / Full Text

A possibility for application of the method of thin-layer rotating disk electrode (RDE) for investigation of kinetics of hydrogen electrooxidation on highly dispersed platinum catalysts formed on the carbon nanotubes (CNT) is studied. It is shown that the polarization curves of hydrogen oxidation on the studied catalysts approach the calculated curves for the diffusion overpotential of hydrogen reaction both in the acidic and alkaline electrolytes. This is the evidence, on the one hand, for a high activity of proposed catalysts in the hydrogen oxidation reaction and, on the other hand, for incorrect use of the Koutecky–Levich equation for calculating the kinetic currents in the case under consideration. The characteristics of hydrogen–oxygen fuel cell (FC) with anode based of synthesized 40Pt/CNT catalysts are highly comparative with the characteristics of FC containing commercial 60Pt catalyst (HiSPEC 9100) on the anode.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119071, RussiaO. V. Korchagin, N. M. Zagudaeva, M. V. Radina, V. A. Bogdanovskaya & M. R. Tarasevich
  1. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K., and Iwashita, N, Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, p. 3904.
  2. Tarasevich, M.R. and Korchagin, O.V, Rapid diagnostics of characteristics and stability of fuel cells with proton-conducting electrolyte, Russ. J. Electrochem., 2014, vol. 50, p. 737.
  3. Chen, Z., Higgins, D., Yu, A., Zhang, L., and Zhang, J., A review on non-precious metal electrocatalysts for PEM fuel cells, Energy Environ. Sci., 2011, vol. 4, p. 3167.
  4. Brouzgou, A., Song, S.Q., and Tsiakaras, P, Low and non-platinum electrocatalysts for PEMFCs: Current status, challenges and prospects, Appl. Catalysis B: Environmental, 2012, vol. 127, p. 371.
  5. Hasche, F., Oezaslan, M., and Strasser, P, Activity, stability and degradation of multi wall carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 15251.
  6. Zhang, W., Sherrell, P., Minett, A.I., Razal, J.M., and Chen, J, Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells, Energy Environ. Sci., 2010, vol. 3, p. 1286.
  7. Sahoo, M., Scott, K., and Ramaprabhu, S, Platinum decorated on partially exfoliated multiwalled carbon nanotubes as high performance cathode catalyst for PEMFC, Int. J. Hydrogen Energy, 2015, vol. 40, p. 9435.
  8. Merle, G., Wessling, M., and Nijmeijer, K, Anion exchange membranes for alkaline fuel cells: A review, J. Membr. Sci., 2011, vol. 377, p. 1.
  9. Fukuta, K., Electrolyte Materials for AMFCs and AMFC Performance. Tokuama Corp. May 8, 2011.
  10. Varcoe, J.R., Atanassov, P., Dekel, D.R., Herring, A.M., Hickner, M.A., Kohl, P.A., Kucernak, A.R., Mustain, W.E., Nijmeijer, K., Scott, K., Xu, T., and Zhuang, L., Anion-exchange membranes in electrochemical energy systems, Energy Environ. Sci., 2014, vol. 7, p. 3135.
  11. Korchagin, O.V. and Tarasevich, M.R, Tokogeneriruyushchie reaktsii v toplivnykh elementakh s protonprovodyashchim i anionprovodyashchim elektrolitami (obzor), (Current-generating reactions in fuel cells with proton-conducting and anion-conducting electrolytes (a review)), Elektrokhimicheskaya Energetika, 2014, vol. 14, no. 3, p. 117.
  12. Bagotzky, V.S. and Osetrova, N.V, Investigations of hydrogen ionization on platinum with the help of micro-electrodes, J. Electroanal. Chem., 1973, vol. 43, p. 233.
  13. Petrii, O.A. and Tsirlina, G.A, Electrocatalytic activity prediction for hydrogen electrode reaction: intuition, art, science, Electrochim. Acta, 1994, vol. 39, p. 1739.
  14. Tarasevich, M.R. and Korchagin, O.V, Electrocatalysis and pH (a review), Russ. J. Electrochem., 2013, vol. 49, p. 600.
  15. Sheng, W., Gasteiger, H.A., and Shao-Horn, Y, Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes, J. Electrochem. Soc., 2010, vol. 157, p. 1529.
  16. Avakov, V.B., Aliev, A.D., Bogdanovskaya, V.A., Ivanitskii, B.A., Kazanskii, L.P., Kapustin, A.V., Korchagin, O.V., Landgraf, I.K., Tarasevich, M.R., and Chalykh, A.E, Variations in the structure and electrochemical characteristics of membrane electrode assemblies during the endurance testing of hydrogen–air fuel cells, Russian Journal of Physical Chemistry A, 2015, vol. 89, p. 887.
  17. Bogdanovskaya, V.A, Krasil’nikova, O.K., Kuzov, A.V., Radina, M.V., Tarasevich, M.R., Avakov, V.B., Kapustin, A.V., and Landgraf, I.K., Electrochemical and structure characteristics of PtCoCr/C-Catalyst with platinum content 50 wt % and cathode on its basis for fuel cell with proton-conducting polymer electrolyte, Russ. J. Electrochem., 2015, vol. 51, p. 602.
  18. Bogdanovskaya, V.A., Tarasevich, M.R., Kuznetsova, L.N., Zhutaeva, G.V., and Lozovaya, O.V, Oxygen electroreduction at catalysts PtM (M = Co,Ni,or Cr), Russ. J. Electrochem., 2010, vol. 46, p. 925.
  19. NIST X-ray Photoelectron Spectroscopy Database (http://srdata.nist.gov).
  20. Durst, J., Simon, C., Hasche, F., and Gasteiger, H.A, Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt,Ir,Rh,and Pd electrocatalysts in acidic media, J. Electrochem. Soc., 2015, vol. 162, p. 190.
  21. Vetter, K.J., Electrochemische Kinetik, Berlin: Springer, 1961.