Статья
2019

Mixed Platinum–Nickel Catalysts of Oxygen Reduction


T. A. Stel’mashuk T. A. Stel’mashuk , E. V. Alekseeva E. V. Alekseeva , O. V. Levin O. V. Levin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519110144
Abstract / Full Text

A mixed catalyst based on platinum and nickel oxide was obtained as a result of the synthesis and subsequent alkaline hydrolysis of thin polymer films of poly[Ni(Salen)] with platinum nanoparticles previously electrodeposited in its pores. The efficiency of catalyst operation was tested in oxygen electroreduction in an alkaline medium. A distinction of the catalyst is its high activity and tolerance to methanol impurities compared with commercial analogs.

Author information
  • St. Petersburg State University, 199034, St. Petersburg, Russia

    T. A. Stel’mashuk, E. V. Alekseeva & O. V. Levin

References
  1. Escudero-Escribano, M., Jensen, K.D., and Jensen, A.W., Recent advances in bimetallic electrocatalysts for oxygen reduction: design principles, structure-function relations and active phase elucidation, Curr. Opin. Electrochem., 2018, vol. 8, p. 135.
  2. Imaoka, T., Kitazawa, H., Chun, W.J., and Yamamoto, K., Finding the most catalytically active platinum clusters with low atomicity, Angew. Chem., Int. Ed., 2015, vol. 54, p. 9810.
  3. Wang, H., Yin, S., Eid, K., Li, Y., Xu, Y., Li, X., Xue, H., and Wang, L., Fabrication of mesoporous cage-bell Pt nanoarchitectonics as efficient catalyst for oxygen reduction reaction, ACS Sustainable Chem. Eng., 2018, vol. 6, p. 11768.
  4. Hoque, M.A., Hassan, F.M., Jauhar, A.M., Jiang, G., Pritzker, M., Choi, J.Y., Knights, S., Ye, S., and Chen, Z., Web-like 3D architecture of Pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance, ACS Sustainable Chem. Eng., 2018, vol. 6, p. 93.
  5. Zhang, J., Yang, H., Fang, J., and Zou, S., Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra, Nano Lett., 2010, vol. 10, p. 638.
  6. Joo, S.H., Lee, H.I., You, D.J., Kwon, K., Kim, J.H., Choi, Y.S., Kang, M., Kim, J.M., Pak, C., Chang, H., and Seung, D., Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes, Carbon, 2008, vol. 46, p. 2034.
  7. Zou, L., Fan, J., Zhou, Y., Wang, C., Li, J., Zou, Z., and Yang, H., Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions, Nano Res., 2015, vol. 8, p. 2777.
  8. Prabu, M., Ketpang, K., and Shanmugam, S., Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries, Nanoscale, 2014, vol. 6, p. 3173.
  9. Huang, L., Jiang, Z., Gong, W., and Shen, P.K., Facile fabrication of radial PtCo nanodendrites for enhanced methanol oxidation electrocatalysis, ACS Appl. Nano Mater., 2018, vol. 1, p. 5019.
  10. Huang, X., Li, Y., Li, Y., Zhou, H., Duan, X., and Huang, Y., Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties, Nano Lett., 2012, vol. 12, p. 4265.
  11. Qu, X., Cao, Z., Zhang, B., Tian, X., Zhu, F., Zhang, Z., Jiang, Y., and Sun, S., One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid, Chem. Commun., 2016, vol. 52, p. 4493.
  12. Huang, X., Zhu, E., Chen, Y., Li, Y., Chiu, C.-Y., Xu, Y., Lin, Z., Duan, X., and Huang, Y., A facile strategy to Pt3Ni nanocrystals with highly porous features as an enhanced pxygen reduction reaction catalyst, Adv. Mater., 2013, vol. 25, p. 2974.
  13. Oh, A., Baik, H., Choi, D. S., Cheon, J. Y., Kim, B., Kim, H., Kwon, S.J., Joo, S.H., Jung, Y., and Lee, K., Skeletal octahedral nanoframe with cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core–shell nanocrystal, ACS Nano, 2015, vol. 9, p. 2856.
  14. Wang, Q., Tian, Y., Chen, G., and Zhao, J., Theoretical insights into the energetics and electronic properties of MPt12 (M = Fe, Co, Ni, Cu, and Pd) nanoparticles supported by N-doped defective graphene, Appl. Surf. Sci., 2017, vol. 397, p. 199.
  15. Zhang, C., Shen, X., Pan, Y., and Peng, Z., A review of Pt-based electrocatalysts for oxygen reduction reaction, Fron. Energy, 2017, vol. 11, p. 268.
  16. Shao, M., Chang, Q., Dodelet, J.-P., and Chenitz, R., Recent advances in electrocatalysts for oxygen reduction reaction, Chem. Rev., 2016, vol. 116, p. 3594.
  17. Niu, G., Zhou, M., Yang, X., Park, J., Lu, N., Wang, J., Kim, M.J., Wang, L., and Xia, Y., Synthesis of Pt–Ni octahedra in continuous-flow droplet reactors for the scalable production of highly active catalysts toward oxygen reduction, Nano Lett., 2016, vol. 16, p. 3850.
  18. Chen, L., Zhu, J., Wang, J., Xiao, W., Lei, W., Zhao, T., Huang, T., Zhu, Y., and Wang, D., Phase conversion of Pt3Ni2/C from disordered alloy to ordered intermetallic with strained lattice for oxygen reduction reaction, Electrochim. Acta, 2018, vol. 283, p. 1253.
  19. Liu, J., Lan, J., Yang, L., Wang, F., and Yin, J., PtM (M = Fe, Co, Ni) bimetallic nanoclusters as active, methanol-tolerant, and stable catalysts toward the oxygen reduction reaction, ACS Sustainable Chem. Eng., 2019, vol. 7, p. 6541.
  20. Asteazaran, M., Cespedes, G., Bengió, S., Moreno, M.S., Triaca, W.E., and Castro Luna, A.M., Research on methanol-tolerant catalysts for the oxygen reduction reaction, J. Appl. Electrochem., 2015, vol. 45, p. 1187.
  21. Zignani, S.C., Baglio, V., Sebastián, D., Rocha, T.A., Gonzalez, E.R., and Aricò, A.S., Investigation of PtNi/C as methanol tolerant electrocatalyst for the oxygen reduction reaction, J. Electroanal. Chem., 2016, vol. 763, p. 10.
  22. Yang, H., Coutanceau, C., Léger, J.-M., Alonso-Vante, N., and Lamy, C., Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles, J. Electroanal. Chem., 2005, vol. 576, p. 305.
  23. Lee, D.U., Kim, B.J., and Chen, Z., One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst, J. Mater. Chem. A, 2013, vol. 1, p. 4754.
  24. Al-Enizi, A.M., Elzatahry, A.A., Soliman, A.R.I., and Al-Theyab, S.S., Electrospinning synthesis and electrocatalytic performance of cobalt oxide/carbon nanofibers nanocomposite based PVA for fuel cell applications, Int. J. Electrochem. Sci., 2012, vol. 7, p. 12646.
  25. Kuznetsov, N., Yang, P., Gorislov, G., Zhukov, Y., Bocharov, V., Malev, V., and Levin, O., Electrochemical transformations of polymers formed from nickel(II) complexes with salen-type ligands in aqueous alkaline electrolytes, Electrochim. Acta, 2018, vol. 271, p. 190.
  26. Schmidt, T.J., Gasteiger, H.A., Stäb, G.D., Urban, P.M., Kolb, D.M., and Behm, R.J., Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration, J. Electrochem. Soc., 1998, vol. 145, p. 2354.
  27. Matienzo, J., Yin, L.I., Grim, S.O., and Swartz, W.E., X-ray photoelectron spectroscopy of nickel compounds, Inorg. Chem., 1973, vol.12, p. 2762.
  28. Koutečky, J. and Levich, V.G., The use of a rotating disk electrode in the studies of electrochemical kinetics and catalytic processes, Zh. Fiz. Khim., 1958, vol. 32(7), p. 1565.
  29. Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., and Dai, H., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nat. Mater., 2011, vol. 10, p. 780.
  30. Salgado, J.R.C., Antolini, E., and Gonzalez, E.R., Carbon supported Pt–Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cells, Appl. Catal., B, 2005, vol. 57, p. 283.
  31. Greeley, J., Rossmeisl, J., Hellman, A., and Nørskov, J.K., Theoretical trends in particle size effects for the oxygen reduction reaction, Z. Phys. Chem., 2007, vol. 221, p. 1209.
  32. He, W., Liu, J., Qiao, Y., Zou, Z., Zhang, X., Akins, D.L., and Yang, H., Simple preparation of Pd–Pt nanoalloy catalysts for methanol-tolerant oxygen reduction, J. Power Sources, 2010, vol. 195, p. 1046.