Effect of PANI–AC Composite on Electrochemical Synthesis of Hydrogen Peroxide by Alkaline H2–O2 Fuel Cell Reactor

 Mi-Hyon Ri Mi-Hyon Ri , Tong-Su Kim Tong-Su Kim , Dok-Song Kim Dok-Song Kim , Kye-Ryong Sin Kye-Ryong Sin
Российский электрохимический журнал
Abstract / Full Text

Effect of polyaniline on the oxygen reduction reaction during the electrochemical synthesis of H2O2 by an alkaline H2–O2 fuel cell reactor was investigated. Pt/C electrode was used as the anode and polyaniline polymerized on the activated carbon electrode was used as the cathode. Under the conditions of an anolyte flow rate of 15 mL h–1, a short-circuit, atmospheric pressure and 298 K, the concentration of H2O2 reached at a maximum value of 1.31 mol L–1 after the reaction time of 3 h.

Author information
  • Department of Chemistry, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea

    Mi-Hyon Ri, Tong-Su Kim, Dok-Song Kim & Kye-Ryong Sin

  1. Seccombe, R., Europe Patent 2008101952, 2008.
  2. Ilja, B., Europe Patent 2006126044, 2006.
  3. Barros, W.R.P., Ereno, T., Tavares, A.C., and Lanza, M.R.V., In situ electrochemical generation of hydrogen peroxide, in alkaline aqueous solution, by using an unmodified gas diffusion electrode, ChemElectroChem, 2015, vol. 2, p. 714.
  4. Menegazzo, F., Manzoli, M., Signoretto, M., Pinna, F., and Strukul, G., H2O2 direct synthesis under mild conditions on Pd–Au samples: effect of the morphology and of the composition of the metallic phase, Catal. Today, 2015, vol. 248, p. 18.
  5. Drogui, P., Elmaleh, S., Rumeau, M., Bernard, C., and Rambaud, A., Hydrogen peroxide production by water electrolysis: application to disinfection, J. Appl. Electrochem., 2001, vol. 31, p. 877.
  6. Guo, Z., Feng, J., Feng, Y., Evans, D.G., and Li, D., In situ synthesis of solid base catalysts for the regeneration of degradation products formed during the anthraquinone process for the manufacture of hydrogen peroxide, Appl. Catal. A, 2011, vol. 401, p. 163.
  7. Banks, C.E. and Compton, R.G., Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound, Ultrason. Sonochem., 2007, vol. 14, p. 405.
  8. Bisselink, R.J.M. and Erkel, J., US Patent 20160222527 A1, 2016.
  9. Rhodes, C.P., Tennakoon, C.L.K., Singh, W.P., and Anderson, K.C., US Patent 20090114532 A1, 2009.
  10. Gou, J., Xie, S., and Jia, D., Progress in research of the synthesis of hydrogen peroxide, Chem. Ind. Times, 2008, vol. 7, p. 54.
  11. Yue, Z., Zhi, M., and Tong, D., Developments in the techniques for manufacture of hydrogen peroxide, Ind. Catal., 2004, vol. 3, p. 17.
  12. Yamanaka, I., Direct synthesis of H2O2 by a H2/O2 fuel cell, Catal. Surv. Asia, 2008, vol. 12, p. 78.
  13. Yamanaka, I., Direct and safe synthesis of H2O2 from O2 and H2 using fuel cell reactors, J. Jpn. Pet. Inst., 2014, vol. 57, no. 6, p. 237.
  14. Ma, Z., Xie, X., Ma, X., Zhang, D., Ren, Q., and Schmidt, V.M., Electrochemical characteristics and performance of CoTMPP/BP oxygen reduction electrocatalysts for PEM fuel cell, Electrochem. Commun., 2006, vol. 8, p. 389.
  15. Murayama, T., Tazawa, S., Takenaka, S., and Yamanaka, I., Catalytic neutral hydrogen peroxide synthesis from O2 and H2 by PEMFC fuel, Catal. Today, 2011, vol. 164, p. 163.
  16. Liu, H., Zhang, L., Zhang, J., Ghosh, D., Jung, J., Downing, B.W., and Whittemore, E., Electrocatalytic reduction of O2 and H2O2 by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodesm, J. Power Sources, 2006, vol. 161, p. 743.
  17. Yamanaka, I., Onizawa, T., Suzuki, H., Hanaizumi, N., Nishimura, N., and Takenaka, S., Study of direct synthesis of hydrogen peroxide acid solutions at a heat-treated MnCl-porphyrin/activated carbon cathode from H2 and O2, J. Phys. Chem. C, 2012, vol. 116, p. 4572.
  18. Yamanaka, I., Onisawa, T., Hashimoto, T., and Murayama, T., A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H2 and O2, ChemSusChem, 2011, vol. 4, p. 494.
  19. Li, W., Hydrogen Peroxide Electrosynthesis in Solid Polymer Electrolyte (SPE) Reactors with and Without Power Co-Generation, Vancouver: Univ. of British Columbia, 2017, p. 13.
  20. Bourdo, S.E. and Viswanathan, T., Graphite/polyaniline (GP) composites: synthesis and characterization, Carbon, 2005, vol. 43, p. 2983.
  21. Khadijeh, G., Mir, F.M., Mojtaba, S., and Hassan, K., Synthesis of polyanailine/graphite composite as a cathode of Zn-polyaniline rechargeable battery, J. Power Sources, 2007, vol. 170, p. 513.
  22. Hassan, K., Mir, F.M., and Mojtaba, S., A new desing for dry polyaniline rechargeable batteries, J. Power Sources, 2003, vol. 117, p. 255.
  23. Venkata, G.R., Balaji, P., Srikanth, Vadali, V.S.S., Jain, P.K., Padmanabham, G., and Sundararajan, G., Electrically conductive carbon nanopipe-graphite nanosheet/polyaniline composites, Carbon, 2011, vol. 49, p. 5239.
  24. Dalas, E., Sakkopooulos, S., and Vitoratos, E., Thermal degradation of the electrical conductivity in polyaniline and polypyrrole composites, Synth. Met., 2000, vol. 114, p. 365.
  25. Zhang, H., Zhao, Q., Zhou, S., Liu, N., Wang, X., Li, J., and Wang, F., Aqueous dispersed conducting polyaniline nanofibers: promising high specific capacity electrode materials for supercapacitor, J. Power Sources, 2011, vol. 196, p. 10484.
  26. Yin, Y., Liu, C., and Fan, S., A new type of secondary hybrid battery showing excellent performances, Nano Energy, 2015, vol. 12, p. 486.
  27. Wu, G., More, K.L., Johnston, C.M., and Zelenay, P., High-performance electrocatalysts for oxygen reduction derived from polyaniline and iron and cobalt, Science, 2011, vol. 332, p. 443.
  28. Stejskal, J., Exnerová, M., Morávková, Z., Trchová, M., Hromádková, J., and Prokes, J., Oxidative stability of polyaniline, Polym. Degrad. Stab., 2012, vol. 97, p. 1026.
  29. Hosseini, M.G. and Zardari, P., Electrocatalytical study of carbon supported Pt, Ru and bimetallic Pt–Ru nanoparticles for oxygen reduction reaction in alkaline media, Appl. Surf. Sci., 2015, vol. 345, p. 223.
  30. Rodrigues, P.C., de Souza, G.P., Da Motta Neto, J.D., and Akcelrud, L., Thermal treatment and dynamic mechanical thermal properties of polyaniline, Polymer, 2002, vol. 43, p. 5493.