Enhanced Oxidation of Uric Acid at Thiourea-Modified Gold Electrode in Alkaline Media

T. F. Manny T. F. Manny , R. Miah R. Miah , F. Islam F. Islam , D. Sen D. Sen , R. Mahmud R. Mahmud
Российский электрохимический журнал
Abstract / Full Text

The surface of polycrystalline gold (Au (poly)) electrode was ex situ modified with self-assembled monolayer (SAM) of thiourea (TU) with a view of applying the electrode for the electrochemical oxidation of uric acid (UA) in alkaline media. UA undergoes an enhanced electrochemical oxidation at the monolayer of TU-modified Au (poly) (TU|Au (poly)) electrode at a remarkably lower potential with a higher current density as compared to the bare Au (poly) electrode. The enhanced activity of the electrode was achieved due to the effective blocking of harmful adsorption of UA that takes place strongly at the bare Au (poly) electrode surface. The TU|Au (poly) electrode was also found to be very effective towards simultaneous oxidations of UA, ascorbic acid (AA) and dopamine (DA) in their mixture with well separation of the peak current of the individual substance. This technique may be advantageously utilized for developing sensor for the purpose of detection of UA.

Author information
  • Department of Chemistry, Graduate School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh

    T. F. Manny, R. Miah, F. Islam, D. Sen & R. Mahmud

  1. Lin, K.C., Lin, H.Y., and Chou, P., The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricemic men in a prospective study, J. Rheumatol., 2001, vol. 27, p. 1501.
  2. Johnson, R.J., Kang, D.-H., Feig, D., and Kivlighn, S., Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease?, Hypertension, 2003, vol. 41, p. 1183.
  3. Bos, M.J., Koudstaal, P.J., and Hofman, A., Uric acid is a risk factor for myocardial infarction and stroke: th Rotterdam study, Stroke, 2006, vol. 37, p. 1503.
  4. Yan, J., Liu, S., and Zhang, Z., Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd–Pt nanoparticles, Colloids Surf. B: Biointerfaces, 2013, vol. 111, p. 392.
  5. Zhao, D., Yu, G., Tian, K., and Xu, C., A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy, Biosens. Bioelectron., 2016, vol. 82, p. 119.
  6. Luping, S., Hongji, L., and Mingji, L., Simultaneous determination of ascorbic acid, dopamine, uric acid, tryptophan, and nitrite on a novel carbon electrode, J. Electroanal. Chem., 2016, vol. 783, p. 167.
  7. Lavanya, N., Fazio, E., and Neri, F., Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode, J. Electroanal. Chem., 2016, vol. 770, p. 23.
  8. Anju, J., Wolfgang, S., and Tharamani, N.C., Mesoporous nitrogen containing carbon materials for the simultaneous detection of ascorbic acid, dopamine and uric acid, Sens. Actuators B, 2016, vol. 230, p. 544.
  9. Qing, Z., Jing, B., and Danqun, H., 3D graphene hydrogel-gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid, Sens. Actuators B, 2017, vol. 238, p. 1316.
  10. Eser, E., Şerife, K., Derya, K.Z., and Bülent, Z., Simultaneous electrochemical determination of ascorbic acid and uric acid using poly(glyoxal-bis(2-hydroxyanil)) modified glassy carbon electrode, Sens. Actuators B, 2016, vol. 224, p. 55.
  11. Qin, Q., Xue, B., and Zulin, H., Electropolymerization of a conductive cyclodextrin polymer on reduced graphene oxide modified screen-printed electrode for simultaneous determination of ascorbic acid, dopamine and uric acid, J. Electroanal. Chem., 2016, vol. 782, p. 50.
  12. Kumar, S.P., Manjunatha, R., Venkatesha, T.V., and Suresh, G.S., Polystyrene sulphonate wrapped multiwalled carbon nanotubes modified graphite electrode for simultaneous determination of ascorbic acid, dopamine and uric acid, Russ. J. Electrochem., 2013, vol. 49, p. 299.
  13. Ma, X., Chao, M., and Chen, M., Simultaneous electrochemical determination of norepinephrine, ascorbic acid and uric acid using a graphene modified glassy carbon electrode, Russ. J. Electrochem., 2014, vol. 50, p. 154.
  14. Retna Raj, C. and Ohsaka, T., Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol, J. Electroanal. Chem., 2003, vol. 540, p. 69.
  15. Protiva, R.R., Takeyoshi, O., and Ohsaka, T., Simultaneous electrochemical detection of uric acid and ascorbic acid at a poly(N,N-dimethylaniline) film-coated GC electrode, J. Electroanal. Chem., 2004, vol. 561, p. 75.
  16. Miah, Md.R., Masud, J., and Ohsaka, T., In situ fabricated iodine-adlayer assisted selective electrooxidation of uric acid in alkaline media, Electrochim. Acta, 2008, vol. 54, p. 316.
  17. Miah, Md.R., Alam, M.T., and Ohsaka, T., Sulfur-adlayer-coated gold electrode for the in vitro electrochemical detection of uric acid in urine, Anal. Chim. Acta, 2010, vol. 669, p. 75.
  18. Emad, A.K. and Aysha, A.A., Electrochemical oxidation of dopamine and ascorbic acid at a palladium electrode modified with in situ fabricated iodine-adlayer in alkaline solution, Talanta, 2010, vol. 80, p. 1919.
  19. Raj, C.R., Kitamura, F., and Ohsaka, T., Square wave voltammetric sensing of uric acid using the self-assembly of mercaptobenzimidazole, Analyst, 2002, vol. 9, p. 1155.
  20. Liang, W., Jun, Y.B., and Peng, F.H., Selective determination of uric acid in the presence of ascorbic acid using a penicillamine self-assembled gold electrode, Microchim. Acta, 2007, vol. 158, p. 73.
  21. Jie, Z. and Guofeng, C., Study on adsorption and complexation behavior of thiourea on copper surface, Int. J. Electrochem. Sci., 2011, vol. 6, p. 4048.
  22. Mouang, M. and Berçot, P., Electrochemical analysis of thiourea on platinum in non-aqueous electrolyte, Int. J. Electrochem. Sci., 2011, vol. 6, p. 1007.
  23. Vitali, G., Heili, K., Silvar, K., and Enn, L., Adsorption of thiourea on Bi(1 1 1) electrode surface, J. Electroanal. Chem., 2014, vol. 712, p. 103.
  24. Gonzalo, G., Vicente, A.M., and Gabriela, I.L., Study of thiourea adsorption onto polycrystalline gold electrodes, Electrochim. Acta, 2003, vol. 48, p. 1273.
  25. Magali, Q., Fabrice, L., and Laurence, R., Adsorption of thiourea on polycrystalline platinum: Influence on electrodeposition of copper, Surf. Coat. Technol., 2010, vol. 204, p. 3108.
  26. Patrito, E.M., Cometto, F.P., and Paredes-Olivera, P., Quantum mechanical investigation of thiourea adsorption on Ag(111) considering electric field and solvent effects, J. Phys. Chem. B, 2004, vol. 108, p. 15755.
  27. Ulman, A., An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly, New York: Acad. Press, 1991.
  28. Swalen, J.D., Allara, D.L., and Andrade, J.D., Molecular monolayers and films. A panel report for the Materials Sciences Division of the Department of Energy, Langmuir, 1987, vol. 3, p. 932.
  29. Gonzalez-Granados, Z., Sánchez-Obrero, G., and Madueno, R., Formation of mixed monolayers from formation of mixed monolayers from 11-mercaptoundecanoic acid and octanethiol on Au(111) single crystal electrode under electrochemical control, J. Phys. Chem. C, 2013, vol. 117, p. 24307.
  30. Ahmad, A. and Moore, E., Electrochemical immuneosensor modified with self-assembled monolayer of 11‑mercaptoundecanoic acid on gold electrodes for detection of benzo[a]pyrene in water, Analyst, 2012, vol. 137, p. 5839.
  31. Warakorn, L., Proespichaya, K., and Bo, M., A comparative study of capacitive immunosensors based on self-assembled monolayers formed from thiourea, thioctic acid, and 3-mercaptopropionic acid, Biosens. Bioelectron., 2006, vol. 22, p. 233.
  32. Xinxin, X., Jens, U., Hui, L., Meng’en, W., and Jingdong, Z., Nanoporous gold assembly of glucose oxidase for electrochemical biosensing, Electrochim. Acta, 2014, vol. 130, p. 559.
  33. Mohamed, S.E.-D. and Ohsaka, T., Molecular-level design of binary self-assembled monolayers on polycrystalline gold electrodes, Electrochim. Acta, 2004, vol. 49, p. 2189.
  34. El-deab, M.S., Arihara, K., and Ohsaka, T., Fabrication of Au(111)-like polycrystalline gold electrodes and their applications to oxygen reduction, J. Elctrochem. Soc. 2004, vol. 151, p. E213.
  35. Miah, Md.R. and Ohsaka, T., Electrochemical oxidation of hydrogen peroxide at a bromine adatom-modified gold electrode in alkaline media, Electrochim. Acta, 2009, vol. 54, p. 1570.
  36. Chang, C.C., Yau, S.L., Tu, J.W., and Yang, J.S., Examination of the electrified interfaces of Au(111) in 0.1 M HClO4 containing organic iodide compounds with cyclic voltammetry and in situ scanning tunneling microscopy, Surf. Sci., 2003, vol. 523, p. 59.
  37. Hongguang, Z., Ian, M.R., and Steve, R.L.B., Electrochemical oxidation of gold and thiourea in acidic thiourea solutions, J. Electrochem. Soc., 2001, vol. 148, p. D146.
  38. Miah, Md.R. and Ohsaka, T., Cathodic detection of H2O2 using iodide-modified gold electrode in slkaline media, Anal. Chem., 2006, vol. 78, p. 1200.
  39. Zhong, C.-J., Woods, N.T., Dawson, G.B., and Porter, M.D., Formation of thiol-based monolayers on gold: implications from open circuit potential measurements, Electrochem. Commun., 1999, vol. 1, p. 17.
  40. Cohen-Atiya, M. and Mandler, D., Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements, J. Electroanal. Chem., 2003, vol. 550–551, p. 267.
  41. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamental and Applications, New York: John Wiley and Sons, 2001, chapters 3 and 14.
  42. Riyanto and Imaylina R., Preparation and application of nickel plating on copper electrode (NPCE) for uric acid analysis in human urine using cyclic voltammetry, Int. J. Electrochem. Soc., 2019, vol. 14, p. 2290.
  43. Abellán-Llobregat, A., Ayán-Varela, M., Vidal, L., Paredes, J.I., Villar-Rodil, S., Canals, A., and Morallón, E., Flavin mononucleotide-exfoliated graphene flakes as electrodes for the electrochemical determination of uric acid in the presence of ascorbic acid, J. Electroanal. Chem., 2016, vol. 783, p. 41.
  44. Rezaei, R., Foroughi, M.M., Beitollahi, H., and Alizadeh, R., Electrochemical sensing of uric acid using a ZnO/graphene nanocomposite modified graphite screen printed electrode, Russ. J. Electrochem., 2018, vol. 54, p. 860.