Статья
2019

Composite Solid Electrolytes Based on W-Doped Barium Indate


I. V. Alyabysheva I. V. Alyabysheva , N. A. Kochetova N. A. Kochetova , E. S. Matveev E. S. Matveev , I. E. Animitsa I. E. Animitsa
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519080032
Abstract / Full Text

The composites based on the oxygen-ion and proton conductor Ba2In1.7W0.3O5.45 with a 30 mol % Ba2InNbO6 addition were studied. The processing of the compact samples of the composite electrolyte at 1430°C gave ceramics with a density of 95%. The total electric conductivity of the composite in dry and humid atmospheres decreases by ~0.5 order of magnitude compared with the conductivity of the matrix.

Author information
  • Ural Federal University, 620002, Yekaterinburg, Russia

    I. V. Alyabysheva, N. A. Kochetova, E. S. Matveev & I. E. Animitsa

References
  1. Zhang, G.B. and Smyth, D.M., Defects and transport of the brownmillerite oxides with high oxygen ion conductivity – Ba2In2O5, Solid State Ionics, 1995, vol. 82, p. 161.
  2. Zhang, G.B. and Smyth, D.M., Protonic conduction in Ba2In2O5, Solid State Ionics, 1995, vol. 82, p. 153.
  3. Fisher, C.A.J. and Islam, M.S., Defect, protons and conductivity in brownmillerite-structured Ba2In2O5, Solid State Ionics, 1999, vol. 118, p. 355.
  4. Fisher, W., Reck, G., and Schober, T., Structural transformation of the oxygen and proton conductor Ba2In2O5 in humid air: an in-situ X-ray powder diffraction study, Solid State Ionics, 1999, vol. 116, p. 211.
  5. Schober, T., Friedrich, J., and Krug, F., Phase transformation in the oxygen and proton conductor Ba2In2O5 in humid atmospheres below 300°C, Solid State Ionics, 1997, vol. 99, p. 9.
  6. Schober, T. and Friedrich, J., The oxygen and proton conductor Ba2In2O5: Thermogravimetry of proton uptake, Solid State Ionics, 1998, vols. 113–115, p. 369.
  7. Hashimoto, T., Inagaki, Y., Kishi, A., and Dokiya, M., Absorption and secession of H2O and CO2 on Ba2In2O5 and their effects on crystal structure, Solid State Ionics, 2000, vol. 128, p. 227.
  8. Martinez, J.-R., Mohn, C., Stolen, S., and Allan, N.L., Ba2In2O4(OH)2: Proton sites, disorder and vibrational properties, J. Solid State Chem., 2007, vol. 180, p. 3388.
  9. Prasanna, T.R. and Novrotsky, A., Energetics of the oxygen vacancy order-disorder transition in Ba2In2O5, J. Mater. Res., 1993, vol. 8, no. 7, p. 1484.
  10. Ta, T.Q., Tsuji, T., and Yamamura, Y., Thermal and electrical properties of Ba2In2O5 substituted for In site by rare earth elements, J. Alloys Compd., 2006, vols. 408–412, p. 253.
  11. Yao, T., Uchimoto, Y., Kinuhata, M., Inagaki, T., and Yoshida, H., Crystal structure of Ga-doped Ba2In2O5 and its oxide ion conductivity, Solid State Ionics, 2000, vol. 132, p. 189.
  12. Noirault, S., Quarez, E., Piffard, Y., and Joubert, O., Water incorporation into the Ba2(In1 – xMx)2O5 (M = Sc3+ 0 ≤ x < 0.5 and M = Y3+ 0 ≤ x < 0.35) system and protonic conduction, Solid State Ionics, 2009, vol. 180. p. 1157.
  13. Jayaraman, V., Magrez, A., Caldes, M., Joubert, O., Ganne, M., Piffard, Y., and Brohan, L., Characterization of perovskite systems derived from Ba2In2O5. Part I: the oxygen-deficient Ba2In2(1 – x)Ti2xO5 + x1 – x (0 ≤ x ≤ 1) compounds, Solid State Ionics, 2004, vol. 170, p. 17.
  14. Jayaraman, V., Magrez, A., Caldes, M., Joubert, O., Taulelle, F., Rodriguez-Carvajal, J., Piffard, Y., and Brohan, L., Characterization of perovskite systems derived from Ba2In2O5 □. Part II: The proton compounds Ba2In2(1 – x)Ti2xO4 + 2x(OH)y [0 ≤ x ≤ 1; y ≤ 2(1 – x)], Solid State Ionics, 2004, vol. 170, p. 25.
  15. Hideshima, N. and Hashizume, K., Effect of partial substitution of In by Zr, Ti and Hf on protonic conductivity of BaInO2.5, Solid State Ionics, 2010, vol. 181, p. 1659.
  16. Rolle, A., Vannier, R.N., Giridharan, N.V., and Abraham, F., Structural and electrochemical characterization of new oxide ion conductors for oxygen generation systems and fuel cells, Solid State Ionics, 2005, vol. 176, p. 2095.
  17. Rolle, A., Fafilek, G., and Vannier, R.N., Redox stability of Ba2In2O5–doped compounds, Solid State Ionics, 2008, vol. 179, p. 113.
  18. Shimura, T. and Yogo, T., Electrical properties of the tungsten-doped Ba2In2O5, Solid State Ionics, 2004, vol. 175, p. 345.
  19. Uvarov, N.F., Ponomareva, V.G., and Lavrova, G.V., Composite solid electrolytes, Russ. J. Electrochem., 2010, vol. 46, no. 7, p. 722.
  20. Medvedev, D., Maragou, V., Pikalova, E., Demin, A., and Tsiakaras, P., Novel composite solid state electrolytes on the base of BaCeO3 and CeO2 for intermediate temperature electrochemical devices, J. Power Sources, 2013, vol. 221, p. 217.
  21. Kochetova, N., Alyabysheva, I., and Animitsa, I., Composite proton-conducting electrolytes in the Ba2In2O5–Ba2InTaO6 system, Solid State Ionics, 2017, vol. 306, p. 118.
  22. Alyabysheva, I.V., Kochetova, N.A., Matveev, E.S., Baldina, L.I., and Animitsa, I.E., Stabilizing a disordered structural modification of barium indate by means of heterogenous doping, Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 3, p. 384.
  23. Spesivtseva, I.V., Structure and electrical properties of heterophase systems (1 – x)Ba2In2O5 · xBa2InTaO6, Al’tern. Energ. Ekol., 2011, no. 6 (98), p. 21.
  24. Ting, V., Liu, Y., Withers, R.L., and Krausz, E., An electron diffraction and bond valence sum study of the space group symmetries and structures of the photocatalytic 1:1 ordered A2InNbO6 double perovskites (A = Ca2+, Sr2+, Ba2+), J. Solid State Chem., 2004, vol. 177, p. 979.
  25. Yin, J., Zou, Z., and Ye, J., Photophysical and photocatalytic properties of MIn0.5Nb0.5O3 (M = Ca, Sr, and Ba), J. Phys. Chem. B, 2003, vol. 107 (1), p. 61.
  26. Kochetova, N.A., Alyabysheva, I.V., Matveev, E.S., and Animitsa, I.E. Proton Transport in Perovskites Ba2InMO6 (M = Nb, Ta), Russ. J. Electrochem., 2017, vol. 53, no. 6, p. 658.
  27. West, A.R., Solid State Chemistry and Its Applications, Part 2, New York: Wiley, 1984.
  28. Vecherskii, S.I., Tabatchikova, S.N., Antonov, B.D., and Biryukov, V.A., Electrical conductivity of LaCoxFe1 – xO3 – δ and LaLi0.1CoxFe0.9 – xO3 – δ (0 ≤ x ≤ 0.4) oxides, Inorg. Mater., 2011, vol. 47, no. 12, p. 1356.
  29. Uvarov, N.F., Kompozitsionnye tverdye elektrolity (Composite Solid Electrolytes), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2008, pp. 199–200.