Examples



mdbootstrap.com



 
Статья
2021

Effect of Boron on the Combustion Parameters of Hem and Oxidation of Al/B and Ti/B Nanopowders


A. G. KorotkikhA. G. Korotkikh, I. V. SorokinI. V. Sorokin
Российский физический журнал
https://doi.org/10.1007/s11182-021-02387-2
Abstract / Full Text

The paper presents the thermodynamic calculation results of the effect of boron content on the combustion parameters of high-energy materials (HEMs) based on ammonium perchlorate, butadiene rubber, and aluminum and titanium powders as well as the thermal analysis data for the Al and Ti nanopowders and the Al/В and Ti/B mechanical mixtures. The dependences of the combustion temperature, specific impulse, and mass concentration of condensed HEM combustion products on the metal/boron component ratio are obtained. It is found that with an increase of boron concentration in the Al-containing HEM, the combustion temperature and specific impulse decrease by 16% and 3.3%, respectively. Whereas for the Ti-containing HEM, the specific impulse increases by 7.7% for a component ratio Ti/B = 20/80. The thermal analysis of metal nanopowders in the air showed that the maximum oxidation rates of Al/В and Ti/B increase with the increase of the boron content in the mechanical mixture.

Author information
  • National Research Tomsk Polytechnic University, Tomsk, RussiaA. G. Korotkikh & I. V. Sorokin
References
  1. V. A. Arkhipov, A. B. Kiskin, V. E. Zarko, and A. G. Korotkikh, Combust. Explos. Shock Waves, 50, No. 5, 622–624 (2014).
  2. G. V. Belov and B. G. Trusov, Thermodynamic Modeling of Chemically Reacting Systems [in Russian], MSTU named after N. E. Bauman, Moscow (2013).
  3. V. A. Arkhipov, M. V. Gorbenko, T. I. Gorbenko, and L. A. Savel’eva, Combust. Explos. Shock Waves, 45, No. 1, 40–47 (2009).
  4. A. G. Korotkikh, V. A. Arkhipov, O. G. Glotiv, and I. V. Sorokin, Khim. Fiz. Mezoscop., 18, No. 2, 179–186 (2016).
  5. D. B. Lempert, E. M. Dorofeenko, S. I. Soglasnova, and G. N. Nechiporenko, Combust. Explos. Shock Waves, 48, No. 4, 424–427 (2012).
  6. D. B. Lempert, E. M. Dorofeenko, and S. I. Soglasnova, Omsk Nauchn. Vestn. Ser. Aviats.-Raketn. Energ. Mashinostr., 2, No. 3, 58–61 (2018).
  7. Sh. L. Guseinov and S. G. Fedorov, Nanopowders of Aluminum, Boron, Aluminum and Silicon Borides in High-Energy Materials [in Russian], Torus Press, Moscow (2015).
  8. V. P. Sinditskii, A. N. Chernyi, S. Kh. Chzho, and R. S. Bobylev, Usp. Khim. i Khim. Tekhnol., 30, No. 8, 18–20 (2016).
  9. A. G. Korotkikh, O. G. Glotov, V. A. Arkhipov, et al., Combust. Flame, 178, 195–204 (2017).
  10. A. G. Korotkikh, V. A. Arkhipov, K. V. Slyusarskii, and I. V. Sorokin, Combust. Explos. Shock Waves, 54, No. 3, 350–356 (2018).
  11. F. K. Bulanin, A. E. Sidorov, S. A. Kiro, et al., Combust. Explos. Shock Waves, 56, No. 1, 57–62 (2020).
  12. A. G. Korotkikh and I. V. Sorokin, AIP Conf. Proc.:Thermophysical Basis of Energy Technologies (TBET 2019), 2212, 020029-1–020029-6 (2020).