Статья
2018

Comparing the Method and Hardware for Electrochemical Impedance with the Method of Measuring and Analyzing Electrochemical Noise


E. A. Astafev E. A. Astafev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518130049
Abstract / Full Text

The experimental techniques of the methods of impedance with an ac current and electrochemical noise are considered in detail. The main features, disadvantages, and limitations of the application of both methods are underlined and compared. The theoretical possibility of using a new method of electrochemical noise measurement to study electrochemical objects is shown. This method combines the method of impedance and traditional potentiometric and amperometric methods of electrochemical noise measurements.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    E. A. Astafev

References
  1. Bertocci, U., Huet, F., Nogueira, R.P., and Rousseau, P., Drift removal procedures in the analysis of electrochemical noise, Corrosion, 2002, vol. 58, p. 337. doi 10.5006/1.3287684
  2. Astafev, E.A., Ukshe, A.E., Manzhos, R.A., Dobrovolsky, Yu.A., Lakeev, S.G., and Timashev, S.F., Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1742. doi 10.20964/2017.03.56
  3. Martinet, S., Durand, R., Ozil, P., Leblanc, P., and Blanchard, P., Application of electrochemical noise analysis to the study of batteries: state-of-charge determination and overcharge detection, J. Power Sources, 1999, vol. 83, p. 93. doi 10.1016/S0378-7753(99)00272-4
  4. Baert, D.H.J. and Vervaet, A.A.K., Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 2003, vol. 114, p. 357. doi 10.1016/S0378-7753(02)00599-2
  5. Astafiev, E.A. and Dobrovolsky, Yu.A., The behavior of membrane-electrode units of polymeric fuel cells: electrochemical methods to study catalytic activity and corrosion resistance of electrodes, Al’ternativnaya Energetika i Ekologiya (in Russian), 2007, no. 12, p. 72.
  6. Astafev, E.A., Lyskov, N.V., and Gerasimova, E.V., Research of polymer electrolyte fuel cell cathodes by electrochemical techniques, Al’ternativnaya Energetika i Ekologiya (in Russian), 2009, no. 8, p. 93.
  7. Astafev, E.A. and Shkerin, S.N., Impedance measuring devices: Price-quality-functionality relationship, Al’ternativnaia Energetika i Ekologiya (in Russian), 2008, no. 2, p. 150.
  8. Ukshe, A.E., Chikin, A.I., Bukun, N.G., and Astafev, E.A., Low-signal electrochemical methods for testing of electrochemical power sources in situ, Al’ternativnaia Energetika i Ekologiya (in Russian), 2010, no. 11, p. 117.
  9. Bertocci, U. and Kruger, J., Studies of passive film breakdown by detection and analysis of electrochemical noise, Surf. Sci., 1980, vol. 101, p. 608. doi 10.1016/0039-6028(80)90653-6
  10. Cottis, R.A., The significance of electrochemical noise measurements on asymmetric electrodes, Electrochim. Acta, 2007, vol. 52, p. 7585. doi 10.1016/j.electacta. 2006.12.042
  11. Astafev, E.A., Ukshe, A.E., and Dobrovolskii, Yu.A., Hardware for measurement of electrochemical noise of chemical power sources, Pribory i Tekhnika Eksperimenta (in Russian), 2017, no. 6, p. 130. doi 10.7868/S0032816217050032
  12. Liu, L., Pitting mechanism on an austenite stainless steel nanocrystalline coating investigate by electrochemical noise and in-situ AFM analysis, Electrochim. Acta, 2008, vol. 54, p. 768. doi 10.1016/j.electacta. 2008.06.076
  13. Astafev, E.A. and Manzhos, R.A., Wide dynamic range hardware for electrochemical noise measurement, Pribory i Tekhnika Eksperimenta (in Russian), 2018, no. 1, p. 149. doi 10.7868/S0032816217060192
  14. Bertocci, U., Applications of a low noise potentiostat in electrochemical measurements, J. Electrochem. Soc., 1980, vol. 127, p. 1931. doi 10.1149/1.2130039
  15. Huet, F., Nogueira, R.P., Lailler, P., and Torcheux, L., Investigation of the high-frequency resistance of a leadacid battery, J. Power Sources, 2006, vol. 158, p. 1012. doi 10.1016/j.jpowsour.2005.11.026
  16. Xia, D.-H. and Behnamian, Y., Electrochemical noise: A review of experimental setup, instrumentation and DC removal, Russ. J. Electrochem., 2015, vol. 51, p. 593. doi 10.1134/S1023193515070071
  17. Bertocci, U., Gabrielli, C., Huet, F., and Keddam, M., Noise resistance applied to corrosion measurements. I. Theoretical analysis, J. Electrochem. Soc., 1997, vol. 144, p. 31. doi 10.1149/1.1837361
  18. Abaturov, M.A. and Kanevsky, L.S. Anmicroprocessor measuring complex for studying of noise characteristics of chemical power sources, Elrktrohim. Energetika (in Russian), 2008, vol. 8, no. 4. p. 222.
  19. Astafev, E.A., Multi-purpose high resolution device for measurement of electrochemical noise, Pribory i Tekhnika Eksperimenta (in Russian), 2018. doi 10.7868/S0032816218010123
  20. Nyquist, H. Thermal agitation of electric charge in conductors, Phys. Rev., 1928. vol. 32, p. 110. doi 10.1103/PhysRev.32.110
  21. Ritter, S., Huet, F., and Cottis, R.A., Guideline for an assessment of electrochemical noise measurement devices, Mat. Corr., 2012, vol. 63, p. 297. doi 10.1002/maco.201005839
  22. Scandurra, G., Giusi, G., and Ciofi, C., Multichannel amplifier topologies for high-sensitivity and reduced measurement time in voltage noise measurements, IEEE Trans. Instrum. Meas., 2013, vol. 62, p. 1145. doi 10.1109/TIM.2012.2236719
  23. Blanc, G., Gabrielli, C., and Keddam, M., Measurement of electrochemical noise by a cross correlation method, Electrochim. Acta, 1975, vol. 20, p. 687. doi 10.1016/0013-4686(75)90069-9
  24. Sampietro, M., Accomando, G., Fasoli, L.G., Ferrari, G., and Gatti, E.C., High sensitivity noise measurement with a correlation spectrum analyzer, IEEE Trans. Instrum. Meas., 2000, vol. 49, p. 820. doi 10.1109/19.863931
  25. Ciofi, C., Crupi, F., and Pace, C., A new method for high-sensitivity noise measurements, IEEE Trans. Instrum. Meas., 2002, vol. 51, no. 4, p. 656. doi 10.1109/TIM.2002.803080
  26. Astafev, E.A., Ukshe, A.E., Gerasimova, E.V., Dobrovolsky, Yu.A., and Manzhos, R.A., Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads, J. Solid State Electrochem., 2018, vol. 22, p. 1839..doi 10.1007/s10008-018-3892-4
  27. Astafev, E.A., Ukshe, A.E., Leonova, L.S., Manzhos, R.A., and Dobrovolsky, Yu.A., Drift removal and processing features in electrochemical noise analysis, Russ. J. Electrochem., 2018, vol. 54, p. 913 (submitted). doi 10.1134/S0424857018120034
  28. Cheng, Y.F., Luo, J.L., and Wilmott, M., Spectral analysis of electrochemical noise with different transient shapes, Electrochim. Acta, 2000, vol. 45, p. 1763. doi 10.1016/S0013-4686(99)00406-5
  29. Nigmatullin, R.R., Martemianov, S., Evdokimov, Yu.K., Denisov, E., Thomas, A., and Adiutantov, N., New approach for PEMFC diagnostics based on quantitative description of quasi-periodic oscillations, Int. J. Hydrogen Energy, 2016, vol. 41, p. 12582. doi 10.1016/j.ijhydene.2016.06.011
  30. Creason, S.C., Hayes, J.W., and Smith, D.E., Fourier transform faradaic admittance measurements III. Comparison of measurement efficiency for various test signal waveforms, J. Electroanal. Chem., 1973, vol. 47, p. 9. doi 10.1016/S0022-0728(73)80343-2
  31. Popkirov, G.S. and Schindler, R.N., The perturbation signal for fast Fourier transform electrochemical impedance spectroscopy (FFT-EIS), Bulgarian Chem. Commun., 1994, vol. 27, p. 459.
  32. Smith, D.E., Data-processing in electrochemistry, Anal. Chem., 1976, vol. 48, p. A517. doi 10.1021/ac60370a036
  33. Schwall, R.J., Bond, A.M., Loyd, R.J., Larsen, J.G., and Smith, D.E., High-speed synchronous data generation and sampler system—application to online fast Fourier-transform faradaic admittance measurements, Anal. Chem., 1977, vol. 49, p. 1797. doi 10.1021/ac50020a041
  34. Denisov, E., Nigmatullin, R., Evdokimov, Yu., and Timergalina, G., Lithium battery transient response as a diagnostic tool, J. Electron. Mater., 2018, vol. 47, p. 4493. doi 10.1007/s11664-018-6346-y
  35. Lukovtsev, V.P., Rotenberg, Z.A., Dribinskii, A.V., Maksimov, E.M., and Ur’ev, V.N., Estimating depth of discharge of lithium–thionyl chloride batteries from their impedance characteristics, Russ. J. Electrochem., 2005, vol. 41, p. 1097. doi 10.1007/s11175-005-0187-8
  36. Grafov, B.M., Dobrovol’skii, Yu.A., Davydov, A.D., Ukshe, A.E., Klyuev, A.L., and Astaf’ev, E.A., Electrochemical noise diagnostics: Analysis of algorithm of orthogonal expansions, Russ. J. Electrochem., vol. 51, p. 503. doi 10.1134/S1023193515060063
  37. Grafov, B.M., Dobrovolskii, Yu.A., Klyuev, A.L., Ukshe, A.E., Davydov, A.D., and Astaf’ev, E.A., Median Chebyshev spectroscopy of electrochemical noise, J. Solid State Electrochem., 2017, vol. 21, p. 915. doi 10.1007/s10008-016-3395-0
  38. Klyuev, A.L., Davydov, A.D., Grafov, B.M., Dobrovolskii, Yu.A., Ukshe, A.E., and Astaf’ev, E.A., Electrochemical noise spectroscopy: Method of secondary Chebyshev spectrum, Russ. J. Electrochem., vol. 52, p. 1001. doi 10.1134/S1023193516100062
  39. Denisov, E., Evdokimov, Yu.K., Martemianov, S., Thomas, A., and Adiutantov, N., Electrochemical noise as a diagnostic tool for PEMFC, Fuel Cells, 2017, vol. 17, p. 225. doi 10.1002/fuce.201600077
  40. Maizia, R., Dib, A., Thomas, A., and Martemianov, S., Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise, J. Power Sources, 2017, vol. 342, p. 553. doi 10.1016/j.jpowsour.2016.12.053
  41. Denisov, E., Evdokimov, Yu.K., Nigmatullin, R.R., Martemianov, S., Thomas, A., and Adiutantov, N., Spectral method for PEMFC operation mode monitoring based on electrical fluctuation analysis, Sci. Iranica, 2017, vol. 24, p. 1437. doi 10.24200/sci.2017.4125
  42. Timashev, S.F. and Polyakov, Yu.S., Review of Flicker noise spectroscopy in electrochemistry, Fluct. Noise Lett., 2007, vol. 7, p. R15. doi 10.1142/S0219477507003829
  43. Martemianov, S., Adiutantov, N., Evdokimov, Yu.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 2803. doi 10.1007/s10008-015-2855-2
  44. E. A. Astaf’ev, Electrochemical noise measurement of polymer membrane fuel cell under load, Russ. J. Electrochem., 2018, vol. 54, p. 554. doi 10.1134/S1023193518060034
  45. Maizia, R., Dib, A., Thomas, A., and Martemianov, S., Statistical short-time analysis of electrochemical noise generated within a proton exchange membrane fuel cell, J. Solid State Electrochem., 2018, vol. 22, p. 1649. doi 10.1007/s10008-017-3848-0
  46. Martemianov, S., Maillard, F., Thomas, A., Lagonotte, P., and Madier, L., Noise diagnosis of commercial Li-ion batteries using high-order moments, Russ. J. Electrochem., 2016, vol. 52, p. 1122. doi 10.1134/S1023193516120089
  47. Al-Mazeedi, H.A.A., and Cottis, R.A., A practical evaluation of electrochemical noise parameters as indicators of corrosion type, Electrochim. Acta, 2004, vol. 49, p. 2787. doi 10.1016/j.electacta.2004.01.040
  48. Sanchez-Amaya, J.M., Cottis, R.A., and Botana, F.J., Shot noise and statistical parameters for the estimation of corrosion mechanisms, Corros. Sci., 2005, vol. 47, p. 3280. doi 10.1016/j.corsci.2005.05.047
  49. Kulikovsky, A.A., Scharmann, H., and Wippermann, K., On the origin of voltage oscillations of a polymer electrolyte fuel cell in galvanostatic regime, Electrochem. Commun., 2004, vol. 6, p. 729. doi 10.1016/j.elecom. 2004.05.015
  50. Hassibi, A., Navid, R., Dutton, R.W., and Lee, T.H., Comprehensive study of noise processes in electrode electrolyte interfaces, J. Appl. Phys., 2004, vol. 96, p. 1074. doi 10.1063/1.1755429
  51. Kanevskii, L.S., Grafov, B.M., and Astaf’ev, M.G., Dynamics of electrochemical noise of the lithium electrode in aprotic organic electrolytes, Russ. J. Electrochem., 2005, vol. 41, p. 1091. doi 10.1007/s11175-005-0186-9
  52. Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., Measurement of electrochemical noise of a Li/MnO2 primary lithium battery, J. Solid State Electrochem., 2018, doi 10.1007/s10008-018-4074-0
  53. Kanevskii, L.S., Special features of discharge characteristics of different types of lithium-thionyl chloride cells and the problem of their diagnostics, Russ. J. Electrochem., 2009, vol. 45, p. 835. doi 10.1134/S1023193509080011
  54. Martem’yanov, S.A. and Grafov, B.M., Electrochemical AC circuits arising in the presence of hydrodynamic velocity fluctuations of the electrolyte, Sov. Electrochem., 1988, vol. 24, p. 94.
  55. Martem’yanov, S.A. and Grafov, B.M., Hydroelectrochemical impedance associated with turbulent fluctuations in the electrolyte solutions, Sov. Electrochem., 1988, vol. 24, p. 344.
  56. Martem’yanov, S.A. and Grafov, B.M., Hydroelectrochemical impedance of an electrode process comprising two adsorption steps, Sov. Electrochem., 1988, vol. 24, p. 1052.
  57. Grafov, B.M., Martemyanov, S.A., and Nekrasov, L.N., Turbulent Diffusion Layer in Electrochemical Systems (in Russian), Moscow: Nauka publ., 1990, 295 p.
  58. Danaee, I., Kinetics and mechanism of palladium electrodeposition on graphite electrode by impedance and noise measurements, J. Electroanal. Chem., 2011, vol. 662, p. 415. doi 10.1016/j.jelechem.2011.09.012
  59. Danaee, I., Theoretical and experimental studies of layer by layer nucleation and growth of palladium on stainless steel 316L, Chemija, 2013, vol. 24, p. 128.
  60. Fernández, D., Maurer, P., Martine, M., Coey, J.M.D., and Mobius, M.E., Bubble formation at a gas-evolving microelectrode, Langmuir, 2014, vol. 30, p. 13065. doi 10.1021/la500234r
  61. Huet, F., Musiani, M., and Nogueira, R.P., Electrochemical noise analysis of O2 evolution on PbO2 and PbO2-matrix composites containing Co or Ru oxides, Electrochim. Acta, 2003, vol. 48, p. 3981. doi 10.1016/S0013-4686(03)00524-3
  62. Tyagai, V.A., Faradaic noise of complex electrochemical reactions, Electrochim. Acta, 1971, vol. 16, p. 1647. doi 10.1016/0013-4686(71)85075-2
  63. Meszaros, G., Szenes, I., and Lengyel B., Measurement of charge transfer noise, Electrochem. Commun., 2004, vol. 6, p. 1185. doi 10.1016/j.elecom.2004.09.017
  64. Cottis, R.A., Al-Awadhi, M.A.A., Al-Mazeedi, H., and Turgoose, S., Measures for the detection of localized corrosion with electrochemical noise, Electrochim. Acta, 2001, vol. 46, p. 3665. doi 10.1016/S0013-4686(01)00645-4
  65. Xiao, H. and Mansfeld, F., Evaluation of coating degradation with electrochemical impedance spectroscopy and electrochemical noise analysis, J. Electrochem. Soc., 1994, vol. 141, p. 2332. doi 10.1149/1.2055121
  66. Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., The model of electrochemical noise of a hydrogen-air fuel cell, J. Electrochem. Soc., 2018, vol. 165, p. F604. doi 10.1149/2.0251809jes
  67. Astafev, E.A., Electrochemical noise measurement of a Li/SOCl2 primary battery, J. Solid State Electrochem., 2018. doi 10.1007/s10008-018-4067-z
  68. Tyagai, V.A. and Luk’yanchikova, N.B., Equilibrium fluctuations in electrochemical processes, Elektrokhimiya (in Russian), 1967, vol. 3, p. 316.
  69. Tyagai, V.A., Noise in electrochemical systems, Elektrokhimiya (in Russian), 1974, vol. 10, p. 3.
  70. Schottky, W., On spontaneous current fluctuations in different electricity conductors (in German), Ann. Phys., 1918, vol. 362, p. 541. doi 10.1002/andp.19183622304. 10.1002/andp.19183622304
  71. Bertocci, U. and Huet, F., Noise analysis applied to electrochemical systems, Corrosion, 1995, vol. 51, p. 131. doi 10.5006/1.3293585