Examples



mdbootstrap.com



 
Статья
2020

Flocculation of Titanium Dioxide with Functionalized Citrus Pectin


V. E. ProskurinaV. E. Proskurina, S. V. ShilovaS. V. Shilova, E. S. KashinaE. S. Kashina, A. P. RakhmatullinaA. P. Rakhmatullina, Yu. G. GalyametdinovYu. G. Galyametdinov
Российский журнал прикладной химии
https://doi.org/10.1134/S107042722002010X
Abstract / Full Text

Modified polysaccharides were prepared by the reaction of citrus pectin with a cationic monomer, (1,2-epoxypropyl)triethylammonium chloride, in alkaline medium and under the action of microwave radiation in the reactor system microwave–ultrasonic–UV-induced synthesis. Organic hybrids were prepared by mixing aqueous solutions of natural polysaccharides (pectin and modified pectin with chitosan) under ambient conditions in 1 : 1 ratio. The influence of the concentration of citrus pectin, its modified samples, chitosan, and their organic hybrids on the flocculating properties was studied for a model disperse system, a suspension of titanium dioxide in water and aqueous salt solutions, under the conditions of free (unrestricted) sedimentation. The influence of the ionic strength on the conformational state of polysaccharide macromolecules and on the aggregation of titanium dioxide particles was analyzed.

Author information
  • Kazan National Research University of Technology, 420015, Kazan, RussiaV. E. Proskurina, S. V. Shilova, E. S. Kashina, A. P. Rakhmatullina & Yu. G. Galyametdinov
References
  1. Zhang, J., Sun, W., Gao, Z., Niu, F., Wang, L., Zhao, Y., and Gao, Y., Minerals, 2018, vol. 8, no. 6, pp. 227–238. https://doi.org/10.3390/min8060227
  2. Abiola, O.N., Polymeric Materials for Clean Water, Das, R., Ed., Springer, 2019, pp. 77–92. https://doi.org/10.1007/978-3-030-00743-0_4
  3. Chen, L., Liu, C., Sun, Y., Sun, W., Xu, Y., and Zheng, H., Processes, 2018, vol. 6, no. 5, pp. 54–68. https://doi.org/10.3390/pr6050054
  4. Salehizadeh, H., Yan, N., and Farnood, R., Biotechnol. Adv., 2018, vol. 36, no. 1, pp. 92–119. https://doi.org/10.1016/j.biotechadv.2017.10.002
  5. Liu, Z., Wei, H., Li, A., and Yang, H., Water Res., 2017, vol. 118, pp. 160–166. https://doi.org/10.1016/j.watres.2017.04.032
  6. Azmeera, V., Tungala, K., Adhikary, P., Kumar, K., and Krishnamoorthi, S., Int. J. Biol. Macromol., 2017, vol. 104, pp. 1204–1211. https://doi.org/10.1016/j.ijbiomac.2017.06.111
  7. Pal, P., Pandey, J.P., and Sen, G., Polymer, 2017, vol. 112, pp. 159–168. https://doi.org/10.1016/j.polymer.2017.01.059
  8. Bal, T. and Swain, S., DARU J. Pharm. Sci., 2019, pp. 1–12. https://doi.org/10.1007/s40199-019-00237-8
  9. Nichifor, M. and Zhu, X., Colloid Polym. Sci., 2003, vol. 281, pp. 1034–1039. https://doi.org/10.1007/s00396-003-0872-7
  10. Kumar, D., Pandey, J., Raj, V., and Kumar, P., Open Med. Chem. J., 2017, vol. 11, no. 1, pp. 109–126. https://doi.org/10.2174/1874104501711010109
  11. Ahmad, N.H., Mustafa, S., and Man, Y.B.C., Int. J. Food Properties, 2015, vol. 18, pp. 332–347. https://doi.org/10.1080/10942912.2012.693561
  12. Tungala, K., Adhikary, P., Azmeera, V., Kumar, K., and Krishnamoorthi, S., New J. Chem., 2017, vol. 41, pp. 611–618. https://doi.org/10.1039/C6NJ02599D
  13. Ren, K., Du, H., Yang, Z., Tian, Z., Zhang, X., Yang, W., and Chen, J., ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 10266–10275. https://doi.org/10.1021/acsami.7b00828
  14. Lu, X., Xu, Y., Sun, W., Sun, Y., and Zheng, H., Sci. Total Environ., 2017, vol. 609, pp. 410–418. https://doi.org/10.1016/j.scitotenv.2017.07.192
  15. Peng, S., Jiang, G., Li, X., Yang, L., Liu, F., and He, Y., J. Petrol. Sci. Eng., 2018, vol. 162, pp. 55–62. https://doi.org/10.1016/j.petrol.2017.12.036
  16. Proskurina, V.E., Shabrova, E.S., Rakhmatullina, A.P., and Galyametdinov, Yu.G., Russ. J. Appl. Chem., 2017, vol. 90, no. 10, pp. 1659–1665. https://doi.org/10.1134/S1070427217100202
  17. Proskurina, V.E. and Galyametdinov, Yu.G., Sovremennye problemy teorii i praktiki protsessov flokulyatsii s uchastiem polimer-neorganicheskikh gibridov: Monografiya (Modern Problems of the Theory and Practice of Flocculation Processes Involving Polymer-Inorganic Hybrids: Monograph), Kazan: Kazansk. Nauchno-Issled. Tekhnol. Inst., 2015.
  18. Tarasevich, B.N., IK-spektry osnovnykh klassov organicheskikh soedinenii. Spravochnye materialy (IR Spectra of the Main Classes of Organic Compounds. Reference Materials), Moscow: Mosk. Gos. Univ., 2012.
  19. Silverstein, R.M., Webster, F.X., and Kiemle, D.J., Spectrometric Identification of Organic Compounds, New York: Wiley, 2005.
  20. Mishra, R.K., Sutar, P.B., Singhal, J.P., and Banthia, A.K., Polym.-Plast. Technol. Eng., 2007, vol. 46, no. 11, pp. 1079–1085. https://doi.org/10.1080/03602550701525164
  21. Işıklan, N. and Tokmak, Ş., Int. J. Biol. Macromol., 2018, vol. 113, pp. 669–680. https://doi.org/10.1016/j.ijbiomac.2018.02.155
  22. Chauhan, K., Kumar, R., Kumar, M., Sharma, P., and Chauhan, G.S., Desalination, 2012, vol. 305, pp. 31–37. https://doi.org/10.1016/j.desal.2012.07.042
  23. Singh, R.P., Pal, S., Rana, V.K., and Ghorai, S., Carbohydrate Polym., 2013, vol. 91, pp. 294–299. https://doi.org/10.1016/j.carbpol.2012.08.024
  24. Mohd-Salleh, S.N.A., Mohd-Zin, N.S., and Othman, N., Sains Malaysiana, 2019, vol. 48, pp. 155–164. https://doi.org/10.17576/jsm-2019-4801-18
  25. Vajihinejad, V. and Soares, J.B., Chem. Eng. J., 2018, vol. 346, pp. 447–457. https://doi.org/10.1016/j.cej.2018.04.039
  26. Everaers, R., Grosberg, A.Y., Rubinstein, M., and Rosa, A., Soft Matter, 2017, vol. 13, pp. 1223–1234. https://doi.org/10.1039/C6SM02756C