Structural and Conductive Characteristics of Fe/Co Nanotubes

A. L. Kozlovskii A. L. Kozlovskii , K. K. Kadyrzhanov K. K. Kadyrzhanov , M. V. Zdorovets M. V. Zdorovets
Российский электрохимический журнал
Abstract / Full Text

The properties of Fe/Co nanotubes, which were fabricated by the method of electrochemical template synthesis, are studied. It is shown that the atomic ratio between the metals in the nanotubes shifts in the direction of cobalt with increasing potential difference during their synthesis; the geometric parameters of nanotubes, in particular, the wall thickness, also vary. Using the X-ray diffraction analysis, it was found that an increase in the concentration of cobalt in the crystal structure of nanotubes leads to a decrease in the interplanar distance and an increase in the conductivity.

Author information
  • Institute of Nuclear Physics, Astana branch, ul. Abylai-khan 2/1, Astana, 010008, Kazakhstan

    A. L. Kozlovskii & M. V. Zdorovets

  • Gumilyov Eurasian National University, ul. Satpaeva 2, Astana, 010008, Kazakhstan

    K. K. Kadyrzhanov & M. V. Zdorovets

  • Yeltsin Ural Federal University, ul. Mira 19, Yekaterinburg, 620002, Russia

    M. V. Zdorovets

  1. Parthasarathy, R.V., Phani, K.L.N., and Martin, C.R., Template synthesis of graphitic nanotubules, Adv. Mater., 1995, vol. 7, p. 896.
  2. Chakarvarti, S.K. and Vetter, J., Morphology of etched pores and microstructures fabricated from nuclear track filters, Nucl. Instrum. Methods Phys. Res., Sect. B, 1991, vol. 62, p. 109.
  3. Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., and Fert, A., Giant magnetoresistance in magnetic multilayered nanowires, Appl. Phys. Lett., 1994, vol. 65, no. 19, p. 2484.
  4. Fink, D., Petrov, A.V., Rao, V., and Al, E., Production parameters for the formation of metallic nanotubules in etched tracks, Radiat. Meas., 2003, vol. 36, p. 751.
  5. Veena Gopalan, E., Malini, K.A., and Santhoshkumar, G., Template-assisted synthesis and characterization of passivated nickel nanoparticles, Nanoscale Res. Lett., 2010, vol. 5, p. 889.
  6. Stortini, A.M., Moretto, L.M., and Mardegan, A., Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor, Sens. Actuators, B, 2015, vol. 207, p. 186.
  7. Gehlawat, D. and Chauhan, R.P., Swift heavy ions induced variation in the electronic transport through Cu nanowires, Mater. Chem. Phys., 2014, vol. 145, p. 60.
  8. Amandeep Kaur and Chauhan, R.P., Carbon ion beam-induced variation in orientation of crystal planes of polycrystalline Zn nanowires, Radiat. Eff. Defects Solids, 2014, vol. 169, p. 513.
  9. Pallavi Rana, Devender Gehlawat, and Chauhan, R.P., Effect of gamma irradiation on electrical properties of Cu nanowires, AIP Conf. Proc., 2014, vol. 1591, p. 265.
  10. Pallavi Rana and Chauhan, R.P., Size and irradiation effects on the structural and electrical properties of copper nanowires, Physica B, 2014, vol. 451, p. 26.
  11. Cornelius, T.W., Pitch, O., Mtiller, S., Neumann, R., Karim, S., and Duan, J.L., Burnout current density of bismuth nanowires, J. Appl. Physics, 2008, vol. 103, p. 103713.
  12. Nasirpouri, F., GMR in multilayered nanowires electrodeposited in track-etched polyester and polycarbonate membranes, J. Magn. Magn. Mater., 2007, vol. 308, p. 35.
  13. Azarian, A., Field emission of Co nanowires in polycarbonate template, Thin Solid Films, 2009, vol. 517, p. 1736.
  14. Baranova, L.A., Nickel field-emission microcathode: art of fabrication, properties, and applications, Nucl. Instrum. Methods Phys. Res., Sect. B, 2010, vol. 268, p. 1686.
  15. Adam, E., Vortex detection by electrical transport measurements on a single lead nanowire under axial magnetic field, Appl. Phys. Lett., 2008, vol. 92, p. 012516.
  16. Sanchez-Barriga, J., Magnetoelectrolysis of Co nanowire arrays grown in a track-etched polycarbonate membrane, J. Magn. Magn. Mater., 2007, vol. 312, p. 99.
  17. Qin, J., Nogués, J., Mikhaylova, M., Roig, A., Muñoz, J.S., and Muhammed, M., Differences in the magnetic properties of Co, Fe, and Ni 250–300 nm wide nanowires electrodeposited in amorphous anodized alumina templates, Chem. Mater., 2005, vol. 17, p. 1829.
  18. Ohgai, T., Hoffer, X., Fabian, A., Gravier, L., and Ansermet, J.-P., Electrochemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic oxide layer on metallic aluminium, J. Mater. Chem., 2013, vol. 13, p. 2530.
  19. Haehnel, V., Fahler, S., Schaaf, P., Miglierini, M., Mickel, C., Schultz, L., and Schlörb, H., Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes, Acta Mater., 2010, vol. 58, p. 2330.
  20. Salem, M.S., Sergelius, P., Zierold, R., Montero Moreno, J.M., Görlitz, D., and Nielsch, K., Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition, J. Mater. Chem., 2012, vol. 22, p. 8549.
  21. Sharif, R., Shamaila, S., Ma, M., Yao, L.D., Yu, R.C., Han, X.F., Wang, Y., and Khaleeq-ur-Rahman, M., Magnetic and microstructural characterizations of CoFe and CoFeB nanowires, J. Magn. Magn. Mater., 2008, vol. 320, p. 1512.
  22. Hua, Z., Yang, S., Huang, H., Lv, L., Lu, M., Gu, B., and Du, Y., Metal nanotubes prepared by a sol-gel method followed by a hydrogen reduction procedure, Nanotechnology, 2006, vol. 17, p. 5106.
  23. Zhou, D., Wang, T., Zhu, M.G., Guo, Z.H., Li, W., and Li, F.S., Magnetic interaction in FeCo alloy nanotube array, J. Magn., 2011, vol. 16, p. 413.
  24. Li, F.S., Zhou, D., Wang, T., Wang, Y., Song, L.J., and Xu, C.T., Fabrication and magnetic properties of FeCo alloy nanotube array, J. Appl. Phys., 2007, vol. 101, p. 1.
  25. Bond, A.M., Fleischmann, M., and Robinson, J., Voltammetric measurements using microelectrodes in highly dilute solutions: theoretical considerations, J. Electroanal. Chem., 1984, vol. 168, p. 299.
  26. Rusakov, V.S., Kadyrzhanov, K.K., Kozlovskiy, A.L., Kiseleva, T.Yu., Zdorovets, M.V., and Fadeev, M.S., A Mössbauer study of iron and iron–cobalt nanotubes in polymer ion-track membranes, Moscow Univ. Physics Bull., 2016, vol. 71, p.193.
  27. Frolov, K.V., Zagorskii, D.L., Lyubutin, I.S., Korotkov, V.V., Bedin, S.A., Sulyanov, S.N., Artemov, V.V., and Mchedlishvili, B.V., Synthesis, phase composition, and magnetic properties of iron nanowires prepared in the pores of polymer track-etched membranes, JETP Letters, 2014, vol. 99, p. 570.
  28. Dauginet-De Pra, L., Fabrication of a new generation of track-etched templates and their use for the synthesis of metallic and organic nanostructures, Nucl. Instrum. Methods Phys. Res., Sect. B, 2002, vol. 196, p. 81.
  29. Narayanan, T.N., Shaijumon, M.M., and Ajayan, P.M., Synthesis of high coercivity cobalt nanotubes with acetate precursors and elucidation of the mechanism of growth, J. Phys. Chem. C, 2008, vol. 112, p. 14281.
  30. Motoyama, M., Fukunaka, Y., Sakka, T., Ogata, Y.H., and Kikuchi, S., Electrochemical processing of Cu and Ni nanowire arrays, J. Electroanal. Chem., 2005, vol. 584, p. 84.
  31. Shao, P., Ji, G., and Chen, P., Gold nanotube membranes: Preparation, characterization and application for enantioseparation, J. Memb. Sci., 2005, vol. 255, p. 1.
  32. Chen, Z., Zhan, Q., Xue, D., Li, F., and Zhou, X., Mossbauer study of Fe—Co nanowires, J. Phys. Condens. Matter., 2002, vol. 14, p. 613.
  33. Hunter, D., Osborn, W., Wang, K., Kazantseva, N., Hattrick-Simpers, J., Suchoski, R., Takahashi, R., Young, M.L., Mehta, A., Bendersky, L.A., Lofland, S.E., Wuttig, M., and Takeuchi, I., Giant magnetostriction in annealed Co1–xFex thin-films, Nat. Commun., 2011, vol. 2, article number 518.