Examples



mdbootstrap.com



 
Статья
2021

Extraction Methods for Removing Sulfur and Its Compounds from Crude Oil and Petroleum Products


O. N. KatasonovaO. N. Katasonova, E. Yu. SavoninaE. Yu. Savonina, T. A. MaryutinaT. A. Maryutina
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427221040017
Abstract / Full Text

Sulfur is present in crude oil and petroleum products in the form of various compounds: mercaptans, hydrogen sulfide, sulfides, disulfides, thiophene derivatives, high-molecular-mass heterocyclic compounds, etc. The content of elemental sulfur in petroleum feedstock is low (up to 0.1%). Sulfur negatively affects the service and transportation properties of oil; therefore, the content of sulfur compounds in petroleum products and commercial oil is strictly limited. Numerous methods are used today for removing sulfur compounds from petroleum feedstock, such as hydrotreating, bio- and oxidative desulfurization, extraction, including supercritical fluid extraction, adsorption, alkylation, etc. This review deals with the use of extraction methods for treating petroleum feedstock to remove various sulfur-containing compounds. Particular attention is paid to papers dealing with the use of cheap and available polar organic solvents and inorganic chemicals for removing sulfur and its compounds both from model solutions and from crude oils and petroleum fractions. Also, search for new “green” solvents such as ionic liquids and eutectic mixtures, allowing removal of sulfur compounds from crude oil, shows promise. As a rule, complete removal of sulfur-containing compounds from oil samples by extraction requires a multistep extraction process.

Author information
  • Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991, Moscow, RussiaO. N. Katasonova, E. Yu. Savonina & T. A. Maryutina
References
  1. Bol’shakov, G.F., Seraorganicheskie soedineniya nefti (Organic Sulfur Compounds of Curde Oil), Novosibirsk: Nauka, 1986.
  2. Shmal’, G., Zamrii, A., Viktorova, R., and Alieva, L., Neftegaz. Vert., 2020, nos. 3–4, pp. 102–108. http://www.ngv.ru/magazines/article/neft-bez-sery-eto-realnost/.
  3. Saleh, T.A., Trends Environ. Anal. Chem., 2020, vol. 25, ID e00080. https://doi.org/10.1016/j.teac.2020.e00080
  4. Song, C. and Ma, X., Appl. Catal. B, 2003, vol. 41, nos. 1–2, pp. 207–238. https://doi.org/10.1016/S0926-3373(02)00212-6
  5. Javadli, R. and Klerk, A., Appl. Petrochem. Res., 2012, vol. 1, pp. 3–19. https://doi.org/10.1007/s13203-012-0006-6
  6. Pawelec, B., Navarro, R.N., Campos-Martin, J.M., and Fierro, J.L.G., Catal. Sci. Technol., 2011, vol. 1, pp. 23–42. https://doi.org/10.1039/C0CY00049C
  7. Aitani, A.M., Ali, M.F., and Al-Ali, H.H., Petrol. Sci. Technol., 2000, vol. 18, nos. 5–6, pp. 537–553. https://doi.org/10.1080/10916460008949859
  8. Babich, I.V. and Moulijn, J.A., Fuel, 2003, vol. 82, pp. 607–631. https://doi.org/10.1016/S0016-2361(02)00324-1
  9. Srivastava, V.C., RSC Adv., 2012, vol. 2, pp. 759–783. https://doi.org/10.1039/C1RA00309G
  10. Song, C., Catal. Today, 2003, vol. 86, nos. 1–4, pp. 211–263. https://doi.org/10.1016/S0920-5861(03)00412-7
  11. Al-Degs, Y.S., El-Sheikh, A.H., Al Bakain, R.Z., Newman, A.P., and Al-Ghouti, M.A., Energy Technol., 2016, vol. 4, no. 6, pp. 679–699. https://doi.org/10.1002/ente.201500475
  12. Rang, H., Kann, J., and Oja, V., Oil Shale, 2006, vol. 23, no. 2, pp. 164–176. https://kirj.ee/public/oilshale/oil-2006-2-9.pdf.
  13. Song, C. and Ma, X., Int. J. Green Energy, 2004, vol. 1, no. 2, pp. 167–191. https://doi.org/10.1081/GE-120038751
  14. Stanislaus, A., Marafi, A., and Rana, M.S., Catal. Today, 2010, vol. 153, nos. 1–2, pp. 1–68. https://doi.org/10.1016/j.cattod.2010.05.011
  15. Fedyaeva, O.N. and Vostrikov, A.A., Vestn. Ross. Fonda Fundam. Issled., 2017, no. 1 (93), pp. 114–122. https://www.rfbr.ru/rffi/ru/bulletin/o_2039792#114.
  16. Kumar, S., Srivastava, V.C., and Nanoti, S.M., Sep. Purif. Rev., 2017, vol. 46, no. 4, pp. 319–347. https://doi.org/10.1080/15422119.2017.1288633
  17. Cusack, R.W., Fremeaux, P., and Otto, Y.N.V., Chem. Eng., 1991, vol. 98, no. 2, pp. 66–76.
  18. Gaile, A.A. and Klement’ev, V.N., Khim. Khim. Tekhnol., 2018, no. 46, pp. 39–45.
  19. Abro, R., Abdeltawa, A.A., Al-Deyab, S.S., Yu, G., Qaz, A.Q., Gao, S., and Chen, X., RSC Adv., 2014, vol. 4, pp. 35302–35317. https://doi.org/10.1039/C4RA03478C
  20. Ibrahim, M.H., Hayyan, M., Hashim, M.A., and Hayyan, A., Renew. Sustain. Energy Rev., 2017, vol. 76, pp. 1534–1549. https://doi.org/10.1016/j.rser.2016.11.194
  21. Swapnil, D., Res. J. Chem. Sci., 2012, vol. 2, no. 8, pp. 80–85. http://isca.me/rjcs/Archives/v2/i8/15.ISCA-RJCS-2012-110.pdf.
  22. Gaile, A.A., Klement’ev, V.N., and Vereshchagin, A.V., Russ. J. Appl. Chem., 2019, vol. 92, no. 4, pp. 453–475. https://doi.org/10.1134/S1070427219040013 
  23. Chandran, D., Khalid, M., Walvekar, R., Mubarak, N.M., Dharaskar, S., Wong, W.Y., and Gupta, T.C.S.M., J. Mol. Liq., 2019, vol. 275, pp. 312–322. https://doi.org/10.1016/j.molliq.2018.11.051
  24. Majid, M.F. and Mo, H.F., J. Mol. Liq., 2020, vol. 306, ID 112870. https://doi.org/10.1016/j.molliq.2020.112870
  25. Qi, W., Li, Y., Liu, Z., Li, X., Jiang, Y., and Sun, H., Chem. Eng. Sci., 2020, vol. 228, ID 115979. https://doi.org/10.1016/j.ces.2020.115979
  26. Timko, M.T., Ghoniem, A.F., and Green, W.H., J. Supercritical Fluids, 2015, vol. 96, pp. 114–123. https://doi.org/10.1016/j.supflu.2014.09.015
  27. Bedda, K., Hamada, B., Semikin, K.V., and Kuzichkin, N. V., Petrol. Coal, 2019, vol. 61, no. 6, pp. 1352–1360. https://www.vurup.sk/wp-content/uploads/2019/11/PC-X-2019_Bedda-140.pdf.
  28. Vereshchagin, A.V., Gaile, A.A., Klement’ev, B.N., and Lazunenko, F.A., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2017, no. 40, pp. 69–76.
  29. Kumar, S., Srivastava, V.C., Raghuvanshi, R., Nanoti, S.M., and Sudhir, M., Energy Fuels, 2015, vol. 29, no. 7, pp. 4634–4643. https://doi.org/10.1021/acs.energyfuels.5b00834
  30. Kameshkov, A.V., Gaile, A.A., Kuzichkin, N.V., and Khasanova, A.A., Neftepererab. Neftekhim., 2015, no. 12, pp. 3–6.
  31. Kameshkov, A.V., Gaile, A.A., Kuzichkin, N.V., and Spetsov, E.A., Neftepererab. Neftekhim., 2015, no. 10, pp. 6–11.
  32. Shishkin, S.N., Gaile, A. A., Bakaushina, D.A., and Kuzichkin, N.V., Russ. J. Appl. Chem., 2013, vol. 86, no. 5, pp. 654–657. https://doi.org/10.1134/S1070427213050078 
  33. Vereshchagin, A.V., Gaile, A.A., Klement’ev, B.N., Lazunenko, F.A., and Vorob’eva, A.R., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2019, no. 49 (75), pp. 32–35.
  34. Saha, B., Sengupta, S., and Selvin, R., Sep. Sci. Technol., 2019, vol. 55, no. 6, pp. 1123–1132. https://doi.org/10.1080/01496395.2019.1580292
  35. Kumar, S., Srivastava, V.C., Kumar, A., and Nanoti, S.M., RSC Adv., 2016, vol. 6, pp. 25293–25301. https://doi.org/10.1039/C5RA27757D
  36. Kumar, S., Srivastava, V.C., Nanoti, S.M., Nautiyal, B.R., and Siyaram, RSC Adv., 2014, no. 4, pp. 38830–38838. https://doi.org/10.1039/C4RA05841K
  37. Mokhtar, W.N.A.W., Bakar, W.A.W.A., Ali, R., and Kadir, A.A.A., J. Ind. Eng. Chem., 2015, vol. 30, pp. 274–280. https://doi.org/10.1016/j.jiec.2015.05.033
  38. Toteva, V., Topalova, L., and Manolova, P., J. Univ. Chem. Technol. Metall., 2007, vol. 42, no. 1, pp. 17–20. https://dl.uctm.edu/journal/node/j2007-1/02-Toteva-17-20.pdf.
  39. Gaile, A.A., Chistyakov, V.N., Koldobskaya, L.L., and Kolesov, V.V., Neftepererab. Neftekhim., 2011, no. 12, pp. 23–27.
  40. Kobotaeva, N.S., Skorokhodova, T.S., Andrienko, O.S., Marakina, E.I., and Sachkov, V.I., Appl. Sci., 2018, vol. 8, ID 1259. https://doi.org/10.3390/app8081259
  41. Lyapina, N.K., Marchenko, G.N., Parfenova, M.A., Galkin, E.G., Grishina, R.E., and Nugumanov, R.M., Bashk. Khim. Zh., 2007, vol. 14, no. 12, pp. 55–62
  42. Kameshkov, A.V., Gaile, A.A., Kuzichkin, N.V., and Spetsov, E.A., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2015, no. 32, pp. 72–74.
  43. Mokhtar, W.N.A.W., Bakar, W.A.W.A., Rusmidah Ali, R., and Kadir, A.A.A., J. Taiwan Inst. Chem. Eng., 2014, vol. 45, pp. 1542–1548. https://doi.org/10.1016/j.jtice.2014.03.017
  44. Karonis, D., Pettas, P., Lois, C., and Bardakos, D., IOSR J. Appl. Chem. (IOSR-JAC), 2019, vol. 12, no. 5, pp. 34–42. https://doi.org/10.9790/5736-1205013442
  45. Toteva, V., Oxid. Commun., 2010, vol. 33, no. 1, pp. 147–155. https://scibulcom.net/en/article/U57nM1kxkVMvTWlbpAJW.
  46. Pasadakis, N., Karonis, D., and Mintza, A., Fuel Process. Technol., 2011, vol. 92, no. 8, pp. 1568–1573. https://doi.org/10.1016/j.fuproc.2011.03.023
  47. Vereshchagin, A.V., Gaile, A.A., Klement’ev, V.N., and Dolgov, S.A., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2018, no. 45, pp. 37–42.
  48. Adzamic, T., Sertić-Bionda, K., and Marcec-Rahelic, N., Petrol. Sci. Technol., 2010, vol. 28, pp. 1936–1945. https://doi.org/10.1080/10916460903330056
  49. Adzamic, T., Sertić-Bionda, K., and Zoretić, Z., Nafta, 2009, vol. 60, no. 9, pp. 485–490. https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=65039.
  50. Gaile, A.A., Saifidinov, B.M., Kolesov, V.V., and Koldobskaya, L.L., Russ. J. Appl. Chem., 2010, vol. 83, no. 3, pp. 464–472. https://doi.org/10.1134/S1070427210030171 
  51. Gaile, A.A., Saifidinov, B.M., Kolesov, V.V., and Koldobskaya, L.L., Russ. J. Appl. Chem., 2010, vol. 83, no. 3, pp. 473–476. https://doi.org/10.1134/S1070427210030183 
  52. Gaile, A.A., Saifidinov, B.M., and Koldobskaya, L.L., Neftepererab. Neftekhim., 2011, no. 3, pp. 11–15.
  53. Katasonova, O.N., Savonina, E.Y., and Maryutina, T.A., J. Anal. Chem., 2020, vol. 75, pp. 148–153. https://doi.org/10.1134/S1061934820020070
  54. Kianpour, E. and Azizian, S., Fuel, 2014, vol. 137, pp. 36–40. https://doi.org/10.1016/j.fuel.2014.07.096
  55. Li, Z., Yingna Cui, Y., Li, C., and Shen, Y., Sep. Purif. Technol., 2019, vol. 219, pp. 9–15. https://doi.org/10.1016/j.seppur.2019.03.003
  56. Gao, J., Zhu, S., Dai, Y., Xiong, C., Li, C., Yang, W., and Jiang, X., Fuel, 2018, vol. 233, pp. 704–713. https://doi.org/10.1016/j.fuel.2018.06.101
  57. Moghadam, F.R., Kianpour, E., Azizian, S., Yarie, M., and Zolfigol, M.A., Royal Soc. Open Sci., 2020, vol. 7, ID 200803. https://doi.org/10.1098/rsos.200803
  58. Petkov, P., Tasheva, J., and Stratiev, D., Petrol. Coal, 2004, vol. 42, no. 2, pp. 13–18. https://www.vurup.sk/wp-content/uploads/dlm_uploads/2017/07/pc_petkov.pdf.
  59. Lyapina, N.K., Akhmetov, A.F., Krasil’nikova, Yu.V., Parfenova, M.A., and Organyuk, Yu.V., Bashk. Khim. Zh., 2013, vol. 20, no. 4, pp. 105–107.
  60. Zhao, K., Cheng, Y., Liu, H., Yang, C., Qiu, L. Zeng, G., and He, H., RSC Adv., 2015, vol. 5, pp. 66013–66023. https://doi.org/10.1080/10916466.2019.1570259
  61. Mesdour, S., Boufades, D., Moussiden, A., and Hamada, B., Petrol. Sci. Technol., 2019, vol. 37, no. 15, pp. 1755–1762. https://doi.org/10.1080/10916466.2019.1570259
  62. Hassan, S.I., Sif El-Din, O.I., and Tawfik, S.M., J. Appl. Sci. Res., 2009, vol. 5, pp. 515–521. http://www.aensiweb.com/old/jasr/jasr/2009/515-521.pdf.
  63. Abd El-Aty, D.M., Sif El-Din, O.I., Hassan, S.I., Tawfik, S.M., and Hanafi, S., Petrol. Sci. Technol., 2009, vol. 27, pp. 861–873. https://doi.org/10.1080/10916460802096279
  64. Kopylov, A.Yu., Mazgarov, A.M., and Vil’danov, A.F., Khim. Prom–st. Segodnya, 2010, no. 4, pp. 45–53.
  65. Savonina, E.Yu., Katasonova, O.N., and Maryutina, T.A., Zavod. Lab., 2020, vol. 86, no. 3, pp. 5–10. https://doi.org/10.26896/1028-6861-2020-86-3-5-10
  66. Abd Al-Khodor, Y.A. and Albayati, T.M., Process Safety Environ. Prot., 2020, vol. 136, pp. 334–342. https://doi.org/10.1016/j.psep.2020.01.036
  67. Akopyan, A.V., Andreev, B.V., Anisimov, A.V., Eseva, E.A., Tarakanova, A.V., Ustinov, A.S., Kleimenov, A.V., Kondrashev, D.O., Khrapov, D.V., and Esipenko, R.V., Russ. J. Appl. Chem., 2019, vol. 92, no. 6, pp. 865–873. https://doi.org/10.1134/S1070427210030183 
  68. Saha, B. and Sengupta, S., Energy Fuels, 2017, vol. 31, pp. 996–1004. https://doi.org/10.1021/acs.energyfuels.6b01842
  69. Kharlampidi, Kh.E., Soros. Obraz. Zh., 2000, vol. 6, no. 7, pp. 42–46. http://window.edu.ru/resource/464/21464/files/0007_042.pdf.
  70. Paucar, N.E., Kiggins, P., Blad, B., De Jesus, K., Afrin, F., Pashikanti, S., and Sharma, K., Environ. Chem. Lett., 2021, pp. 1–24. https://doi.org/10.1007/s10311-020-01135-1
  71. Khalilov, A.B., Ibrahimova, M.J., Huseynov, H.J., and Abbasov, V.M., Khim. Inter. Ustoich. Razv., 2019, vol. 27, pp. 109–119. https://doi.org/10.15372/KhUR2019117
  72. Bösmann, A., Datsevich, L., Jess, A., Lauter, A., Schmitz, C., and Wasserscheid, P., Chem. Commun., 2001, pp. 2494–2495. https://doi.org/10.1039/B108411A
  73. Kobotaeva, N.S. and Skorokhodova, T.S., Neftekhimiya, 2020, vol. 60, no. 4, pp. 476–482. https://doi.org/10.31857/S0028242120040061
  74. Wang, J.L., Zhao, D.S., and Li, K.X., Petrol. Sci. Technol., 2012, vol. 30, pp. 2417–2423. https://doi.org/10.1080/10916466.2010.518194
  75. Huang, C., Chen, B., Zhang, J., Liu, Z., and Li, Y., Energy Fuels, 2004, vol. 18, pp. 1862–1864. https://doi.org/10.1021/ef049879k
  76. Chu, X., Hu, Y., Li, J., Liang, Q., Liu, Y., Zhang, X., Peng, X., and Yue, W., Chin. J. Chem. Eng., 2008, vol. 16, no. 6, pp. 881–884. https://doi.org/10.1016/S1004-9541(09)60010-0
  77. Li, J., Lei, X.-J., Tang, X.-D., Zhang, X.-P., Wang, Z.-Y., and Jiao, S., Energy Fuels, 2019, vol. 33, pp. 4079–4088. https://doi.org/10.1021/acs.energyfuels.9b00307
  78. Al Kaisy, G.M.J., Mutalib, M.I.A., Bustam, M.A., Leveque, J.-M., and Muhammad, N., J. Environ. Chem. Eng., 2016, vol. 4, no. 4, pp. 4786–4793. https://doi.org/10.1016/j.jece.2016.11.011
  79. Player, L.C., Chan, B., Lui, M.Y., Masters, A.F., and Maschmeyer, T., ACS Sustain. Chem. Eng., 2019, vol. 7, pp. 4087–4093. https://doi.org/10.1021/acssuschemeng.8b05585
  80. Nie, Y., Li, C., Meng, H., and Wang, Z., Fuel Process. Technol., 2008, vol. 8, pp. 978–983. https://doi.org/10.1016/j.fuproc.2008.04.003
  81. Raj, J.J., Magaret, S., Pranesh, M., Lethesh, K.C., Devi, W.C., and Mutalib, M.I.A., Sep. Purif. Technol., 2018, vol. 196, pp. 115–123. https://doi.org/10.1016/j.seppur.2017.08.050
  82. Dharaskar, S.A., Wasewar, K.L., Varma, M.N., and Shende, D.Z., Int. J. Energy Technol. Policy, 2016, vol. 12, no. 2, pp. 105–121. http://www.inderscience.com/offer.php?id=75659.
  83. Butt, H.S., Lethesh, K.C., and Fiksdahl, A., Sep. Purif. Technol., 2020, vol. 248, ID 116959. https://doi.org/10.1016/j.seppur.2020.116959
  84. Wang, J., Zhao, D., Zhou, E., and Dong, Z., J. Fuel Chem. Technol., 2007, vol. 35, no. 3, pp. 293–296. https://doi.org/10.1016/S1872-5813(07)60022-X
  85. Liu, D., Gui, J., Song, L., Zhang, X., and Sun, Z., Petrol. Sci. Technol., 2008, vol. 26, pp. 973–982. https://doi.org/10.1080/10916460600695496
  86. Asumana, C., Haque, M.R., Yu, L., Wu, X., Chen, X., and Yu, G., Sep. Sci. Technol., 2013, vol. 48, pp. 2582–2588. https://doi.org/10.1080/01496395.2013.804559
  87. Chen, X., Liu, G., Yuan, S., Asumana, C., Wang, W., and Yu, G., Sep. Sci. Technol., 2012, vol. 47, pp. 819–826. https://doi.org/10.1080/01496395.2011.637281
  88. Li, X., Zhang, J., Li, J., and Chen, B., Fuel, 2019, vol. 239, pp. 502–510. https://doi.org/10.1016/j.fuel.2018.11.052
  89. Wang, O., Zhang, T., Zhang, S., Fan, Y., and Chen, B., Sep. Purif. Technol., 2020, vol. 231, ID 115923. https://doi.org/10.1016/j.seppur.2019.115923
  90. Ren, Z., Wei, L., Zhou, Z., Zhang, F., and Wei Liu, W., Energy Fuels, 2018, vol. 32, no. 9, pp. 9172–9181. https://doi.org/10.1021/acs.energyfuels.8b01936
  91. Attia, M., Farag, S., Jaffer, S.A., and Chaouki, J., J. Clean. Prod., 2020, vol. 275, ID 124177. https://doi.org/10.1016/j.jclepro.2020.124177
  92. Rodríguez-Cabo, B., Rodríguez, H., Rodil, E., Arce, A., and Soto, A., Fuel, 2014, vol. 117, pp. 882–889. https://doi.org/10.1016/j.fuel.2013.10.012
  93. Chandran, D., Khalid, M., Walvekar, R., Mubarak, N.M., Dharaskar, S., Wong, W.Y., and Gupta, T.C.S.M., J. Mol. Liq., 2019, vol. 275, pp. 312–322. https://doi.org/10.1016/j.molliq.2018.11.051
  94. Abbott, A.P., Capper, G., Davies, D.L., Munro, H.L., Rasheed, R.K., and Tambyrajah, V., Chem. Commun., 2001, pp. 2010–2011. https://doi.org/10.1039/b106357j
  95. Smith, E.L., Abbott, A.P., and Ryder, K.S., Chem. Rev., 2014, vol. 114, no. 21, pp. 11060–11082. https://doi.org/10.1021/cr300162p
  96. Makoś, pp. and Boczkaj, G., J. Mol. Liq., 2019, vol. 296, ID 111916. https://doi.org/10.1016/j.molliq.2019.111916
  97. Kučan, K.Z. and Rogošić, M., J. Chem. Technol. Biotechnol., 2018, vol. 94, pp. 1282–1293. https://doi.org/10.1002/jctb.5885.
  98. Shirazinia, S., Semnani, A., Nekoeinia, M., Shirani, M., and Akbari, A., J. Mol. Liq., 2020, vol. 301, ID 112364. https://doi.org/10.1016/j.molliq.2019.112364
  99. Almashjary, K.H., Khalid, M., Dharaskar, S., Jagadish, P., Walvekar, R., and Gupta, T.C.S.M., Fuel, 2018, vol. 234, pp. 1388–1400. https://doi.org/10.1016/j.fuel.2018.08.005
  100. Jha, D., Haider, M.B., Kumar, R., and Balathanigaimani, M.S., J. Environ. Chem. Eng., 2020, vol. 8, ID 104182. https://doi.org/10.1016/j.jece.2020.104182
  101. Lee, H., Kang, S., Jin, Y., Jung, D., Park, K., Li, K., and Lee, J., Fuel, 2020, vol. 264, ID 116848. https://doi.org/10.1016/j.fuel.2019.116848
  102. Lima, F., Gouvenaux, J., Branco, L.C., Silvestre, A.J.D., and Marrucho, I.M., Fuel, 2018, vol. 234, pp. 414–421. https://doi.org/10.1016/j.fuel.2018.07.043
  103. Mjalli, F.S., Rahma, W.S.A., Al-Wahaibi, T., and Al-Hashmi, A.A., Chin. J. Chem. Eng., 2019. https://doi.org/10.1016/j.cjche.2019.03.033
  104. Al-Azzawi, M., Mjalli, F.S., Al-Hashmi, A., Al-Wahaibi, T., and Abu-jdayil, B., Chem. Eng. Process.: Process Intens., 2019, vol. 140, pp. 43–51. https://doi.org/10.1016/j.cep.2019.04.012
  105. Sudhir, N., Yadav, P., Nautiyal, B.R., Singh, R., Rastogi, H., and Chauhan, H., Sep. Sci. Technol., 2020, vol. 55, no. 3, pp. 554–563. https://doi.org/10.1080/01496395.2019.1569061
  106. Lima, F., Dave, M., Silvestre, A.J.D., Branco, L.C., and Marrucho, I.M., ACS Sustain. Chem. Eng., 2019, vol. 7, pp. 11341–11349. https://doi.org/10.1021/acssuschemeng.9b00877
  107. Dharaskar, S., Sillanpa, M., and Tadi, K.K., Environ. Sci. Pollut. Res., 2018, vol. 25, pp. 17156–17167. https://doi.org/10.1007/s11356-018-1789-5
  108. Dharaskar, S., Sillanpaa, M., Wasewar, K., and Walvekar, R., Feasibility study of phosphonium ionic liquids as efficient solvent for sulfur extraction from liqup. fuels, Proc. Int. Engineering Research Conf.–12th EURECA 2019, AIP Conf. Proc. 2137, 020002-1–020002-10. https://doi.org/10.1063/1.5120978
  109. Tang, X., Zhang, Y., Li, J., Zhu, Y., Qing, D., and Deng, Y., Ind. Eng. Chem. Res., 2015, vol. 54, pp. 4625−4632. https://doi.org/10.1021/acs.iecr.5b00291
  110. Gano, Z.S., Mjalli, F.S., Al-Wahaibi, T., Al-Wahaibi, Y., and Al Nashef, I.M., Chem. Eng. Process., 2015, vol. 93, pp. 10–20. https://doi.org/10.1016/j.cep.2015.04.001
  111. Li, С., Zhang, J., Li, Z., Yin, J., Cui, Y., Liu, Y., and Yang, G., Green Chem., 2016, vol. 18, pp. 3789–3795. https://doi.org/10.1039/C6GC00366D
  112. Li, J., Xiao, H., Tang, X., and Zhou, M., Energy Fuels, 2016, vol. 30, no. 7, pp. 5411–5418. https://doi.org/10.1021/acs.energyfuels.6b00471
  113. Zhao, X., Zhu, G., Jiao, L., Yu, F., and Xie, C., Chem. Eur. J., 2018, vol. 24, pp. 11021–11032. https://doi.org/10.1002/chem.201801631
  114. Zhu, S., Cheng, H., Dai, Y., Gao, J., and Jiang, X., Energy Fuels, 2020, vol. 34, no. 7, pp. 8186–8194. https://doi.org/10.1021/acs.energyfuels.0c01096
  115. Hatab, F.A., Darwish, A.S., Lemaoui, T., Warrag, S.E.E., Benguerba, Y., Kroon, M.C., and Al Nashef, I.M., J. Chem. Eng. Data, 2020, vol. 65, no. 11, pp. 5443–5457. https://doi.org/10.1021/acs.jced.0c00579
  116. Kiran, N., Abro, R., Abro, M., Shah, A.A., Jatoi, A.S., Bhutto, A.W., Qureshi, K., Sabzoi, N., Gao, S., and Yu, G., Chem. Papers, 2019, vol. 73, pp. 2757–2765. https://doi.org/10.1007/s11696-019-00828-4
  117. Hosseinpour, M., Soltani, M., Noofeli, A., and Nathwani, J., Fuel, 2020, vol. 271, ID 117618. https://doi.org/10.1016/j.fuel.2020.117618
  118. Patwardhan, P.R., Timko, M.T., Class, C.A., Bonomi, R.E., Kida, Y., Hernandez, H.H., Tester, J.W., and Green, W.H., Energy Fuels, 2013, vol. 27, pp. 6108−6117. https://doi.org/10.1021/ef401150w
  119. Ates, A., Azimi, G., Choi, K.-H., Green, W.H., and Timko, M.T., Appl. Catal. B, 2014, vol. 147, pp. 144–155. https://doi.org/10.1016/j.apcatb.2013.08.018
  120. Yan, T., Wu, L., Wang, L., Fu, F., and Fang, T., Energy Fuels, 2020, vol. 34, pp. 2958−2968. https://doi.org/10.1021/acs.energyfuels.9b04148